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CHAPTER 1

INTRODUCTION AND STATEMENT OF THE PROBLEM

"The study of hydrodynamic lubrication is, from a mathematical
standpoint, the study of a particular form of the Navier-Stokes
equations (1)* **,'" It was not until the 1880's that the theory of
hydrodynamic lubrication came into existence. A Committee of the
Institution of Mechanical Engineers had asked Beauchamp Tower to
determine the proper means by which a railroad journal bearing should
be lubricated, The investigation indicated that bath lubrication
significantly lowered the coefficient of friction of the bearing.
When a hole was drilled in the bearing to allow lubricant to be
added, it was noticed that a considerable amount of o0il was flowing
from the hole. Tower tried to plug the hole with a wooden peg but
it was soon worked out when the test was rerun. A gauge was then
attached and indicated a definite pressure greater than the projected
pressure of the load. Further measurements were then taken throughout
the bearing and gave an indication as to the pressure profile in the
bearing (2).*¥%%

Reynolds (3) analysis, in 1886, of Towers' experiment deduced
that the resultant pressure profile was due to hydrodynamic action
in the fluid film and was dependent upon the viscosity of the

lubricant being used. The differential equations formulated by

*Number in parentheses indicate reference in Bibiiography.

**Reference in Bibliography, p. 1.
***Reference in Bibliography, p. 149.



Reynolds for the determination of the hydrodynamic bearing pressure
were solved by an approximate series expansion for an infinitely long
bearing assuming steady state loading only.

As the speeds of the machinery using journal bearings increased
after the turn of the century, the interest in the development of
Journal bearing theory increased considerably. The users of such
machinery were reporting large vibrational amplitudes under certain
conditions of loading and speed which in turn caused large forces to
be transmitted to the system foundation and the system's component parts.

Newkirk (4) reported in 1924 the first recorded instance of
bearing instability. He demonstrated that under certain combinations
of speed and loading, the journal center did not remain fixed as
predicted by the steady-state Reynolds equation, but precessed or
orbited about the equilibrium position at a speed approximately equal
to half the rotational speed. This phenomena was termed oil whip or
whirl and is a self-excited motion.

A complete dynamical analysis of such a system requires that
the hydrodynamic force terms be coupled to the dynamical equations
of motion of the rotor (journal), including the external loading
forces on the system and the unbalance of the journal (See Figures 3.1, 3.2
for journal bearing schematic, force balance and unbalance represen-
tation).

The resulting equations of motion for the complete system are
highly nonlinear and the stability characteristics have been examined

primarily from a linearized or perturbation analysis about the



equilibrium position of a balanced journal under unidirectional loading.

The bearing stability obtained from linearized theory only
predicts the threshold of stability. It does not give any information
as to the magnitude of the journal orbit above the whirl threshold
speed. The linecarized theory predicts that the journal motion will
grow exponentially or become unbounded when the rotor is operated
above the whirl threshold speed. 1In actuality, the journal motion
is bounded and the motion forms limit cycles,

With the aid of the high-speed digital computer and the proper
formulation of the hydrodynamic force expressions, the complete non-
linear motion of the journal bearing system may be obtained through
the use of numerical methods for integrating the governing equation
of motion.

In addition to the determination of the journal motion under
arbitrary loading above and below the stability threshold, it is equally
important that the bearing forces and the bearing dynamic transmissibility
characteristics be determined (see p.4S for explanation of this term) .
The results of such an analysis follows a brief discussion of the

earlier investigations and the state of the art (CHAPTER II).



CHAPTER II

BACKGROUND AND STATE OF THE ART

Under stable operating conditions the journal center will be
located at somerequilibrium eccentricity, €, , and at a given constant
attitude angle, ®O*, as shown in Figure 3.1. This condition would be
ideal for smooth operation of the machinery supported in the journal
bearing. However, as mentioned earlier, numerous reports indicated
that such machinery was having serious vibrational problems.

Harrison (5) in 1913 who gave fldid-film force expressions, and
Newkirk (4) in 1924 were the earliest investigators of the problem of
rotor stability. Working at the General Electric Laboratory, Newkirk
obsecrved and éxplained to some extent the phenomenon of whirl. This
experimental investigation is considered by many to be the point at
which the interest of the engineer and designer first centered on the
fluid-film journal bearing as a contributing factor to the instability
of rotating machinery (6).

Gunter (7) gives a detailed report on the findings of Newkirk (8)
and discusses the work of Robertson (9) who in 1933 used the forces
derived by Harrison to investigate the stability of an infinitely long,
ideal 360° journal bearing. This analysis disagreed with experimental
findings since the journal was shown to be unstable at all speeds. The
discrepancy arose from the fact that Harrison, as referenced above,

had included the negative pressure region of the bearing in his analysis

*See footnote on page 43 for further information about the
equilibrium attitude angles.



since he did not consider film cavitation or rupture. Thus the analysis
by Harrison is valid only for small eccentricities or for the case where
the ambient fluid pressure is greater than the maximum hydpodynamic
pressure developed. In this case the uncavitated film is closely
approximated.

In 1930 Cardullo's work (10) was published in which he congidered
the development of equations for the pressure profiles in short
journal bearings. Sommerfeld (11) had earlier presented an approximate
solution to Reynolds' equation in which the bearing was assumed to be
infinitely long and hence the axial flow of the lubricant could be
neglected. Cardullo realized this approach was in error, especially
for very short bearings or bearings having circumferential grooving. He
proceded to develop a theory which accounted for only axial flow and
presented curves representative of the resulting pressure profiles in
short journal bearings. In a discussion to this paper, Howarth and
Needs called attention to the paper of A. G. M. Michell, "The Lubrica-

tion of Plane Surfaces," published in Zeit. f. Math. u. Phys. in 1905.

Michell had based his work on Reynolds' equation*; dropping the first
term on the left side of the equation. This gave the same results,
without going through the long derivation and assumption, that Cardullo
had presented. Due to the assumption made by Michell and Cardullo which
seemed to make the pressure gradient zero in the circumferential direc-

tion, no further analysis was made of the solution until the 1950's,

*Reynolds' equation is given as Eq. [3.18], p. 2 3.



when Ocvirk, whose work will be discussed later, presented experimental
evidence of the validity of the solution and extended the analysis
considerably.

In 1946 Hagg (12) reported that the upper limit of the whirling
frequency was one-half the rotational frequency, the same conclusion
reached by Robertson in 1933. Hagg's argument was based on the
required flow for a whirling journal whereas Robertson reached his
conclusion by considering the conditions necessary for a force balance
of a whirling idgal journal. The stability of several types of bearing
arrangements were tested experimentally and the tilting pad arrange-
ment was found to be incapable of exciting or sustaining a vibration.

Ocvirk (13) in 1952 presented experimental data which supported
the theory of Michell and Cardullo for bearings having length to
diameter ratios up to about one. His complete analysis gave expressions
for applied load, attitude angle, location and magnitude of peak film
pressures, friction, and required oiliflow rate as a function of the
eccentricity ratio. The basic nondimensional expression developed, the
capacity number, allowed performance curves to be drawn (capacity
number vs. eccentricity ratio) and by comparison to experimental data
it was concluded that reasonable agreement existed between the short
bearing theory and the experimental test data,

Ocvirk's analysis clearly indicated that by dropping the first
term of Reynolds' equation the circumferential pressure gradient was not
zero but some finite value. The part of the circumferential flow
proportional to the journal surface velocity and varying film thickness

was not lost by dropping the first term of Reynolds’ equation.



Burwell (14) in 1951 presented analytical solutions for journal
paths under various simple types of loading (constant, square wave,
sinusoidal) for a very narrow bearing. However, the regions of
negative pressure were retained in the solution, which made the
analysis ambiguous for other than very small eccentricities.

Poritsky (15) in 1953 stated that by neglecting the negative
portion of the journal pressure profile (long bearing equation) the
journal could be shown to be stable below twice the critical frequency
of the rotor. However, in his analysis of the linearized equations a
stiffness term was added to the radial component of motion and the
negative pressure remained in the analysis. One conclusion reached by
his analysis was that rotor flexibility lowered the stable range of
operation. The same conclusion was reached by Hagg and Warner (16) who
devised an electric analog for the flexible rotor.

DuBois and Ocvirk (17) in 1955 considered a method for
estimating a maximum bearing operating temperature and discussed methods
of evaluating the effects of elastic deformation and misalignment on
bearing performance. A method for determining a factor of safety was
also presented.

Kreisle (18) in 1955 gave experimental findings concerning the
performance of short journal bearings under conditions approaching
zero miniﬁum 0il-film thickness. Six different load numbers were
defined and considered to be useful in predicting and analyzing the
performance of short journal bearings. The results of his experimental
torque measurements indicated that, as long as the minimum oil-film

thickness is of the order of or exceeds the sum of the predominant peak



surface roughness of the bearing and journal in the circumferential
direction, hydrodynamic film lubrication exists in the bearing.

Newkirk and Lewis (19) reported from experimental observations
that short bearings, large clearances and moderate loads favored a
wider range of stable oper;tion.

Boeker and Sternlicht (20) derived the stability threshold for
antiwhirl journal bearings* and justified the stiffness term used by
Poritsky as the contributing factor to predicting the region of stable
operation. Hagg and Sankey (21) provide analytical and experimental
results for a rotor bearing system, Linearized elastic and damping
properties were incorporated in their analysis which reduced the
resonant amplitude of the rotor considerably in the analytic solution
and was in good agreement with the experimental amplitudes recorded.

Newkirk (22) reports experimental results obtained from two
different test rigs; one rigid rotor (oil film dominant) and one more
flexible (elasticity of shaft more dominant). Three general definitions
were given and are repeated here:

a. "Resonant whirl [whip]" may be defined as, "a resonant
vibration of a shaft in fluid film journal bearings which
occurs at speeds equal to or above twice the first critical
of the rotor, and at a frequency equal approximately to a
natural frequency of the rotor at the running speed."

b. "Half-frequency whirl" is, "a vibration that may occur at

any rotative speed of a shaft in fluid-film bearings and at

“These have grooving on the shaft or in the bearing surface and
therefore do have a radial component of force whereas the 360° full
journal does not have the radial component if the negative pressures are
not neglected.



a frequency approximately one half of such speed."

c. '"Fluid-criticals" are, "rotor instabilities of limited

speed range due to fluid-film action in journal bearings."

Pinkus (23) reported that flexible mounting gave greater stability
to rotor-bearing systems. This was in direct opposition to the findings
of Poritsky (15) and Hagg and Warner (16) who stated that support
flexibility will lower the stability threshold speed. (Gunter explains
this apparent discrepancy in CHAPTER IV of reference (7)). High
loads and high viscosities were also reported by Pinkus to increase
stability, while unbalance had little or no effect on the resonant whirl.

Pinkus in his experimental investigations of bearing stability
indicates that the order of bearing stability is, starting with the
most stable bearing, as follows: 3-lobe, tilting pad, pressure,
elliptical, 3-groove, and plain circular.

Orbeck (24) in 1958 presented an analysis of oil whip that
incorporated pressure forces, viscous drag forceg, and the centrifugal
forces acting on the journal. A vertical shaft was used for the model
and the experimental results of Kreisle were used to define the capacity
number. Equations are given that determine both the amplitude and the
whirling frequency for a vertical shaft arrangement. The results, as
based on the experimental curves of Kreisle, show for a particular
example cited that the frequency ratio varied from 0.497 at an
eccentricity of 0.05 to 0.499 at an eccentricity of 0.8.

Hull (25) in 1958 demonstrated oil-whip resonance harmonics
experimentally by applying a rotating load to the journal bearing

test rig. The journal center traced out a different trochoid for each
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ratio of exciting force frequency to running speed. Inside loops
denoted a forward rotating load while outside loops denoted backward

rotating loads. The formula he gave was:

N /N,
L =—2— -1
2.16
where:
L = number of loops (inside = +, outside = -)
Nj= journal speed

Nw speed of rotating load .

These results are true only when the single rotating load is
large in comparison to any other forcing function that might be acting
on the journal. If unbalance is present, then the resulting orbit center
traces will be altered considerably due to the synchronous unbalance
force. This will be shown in the following analysis.

In 1959 Hori (26) presented the results of an investigation
that allowed the inherent journal instability of previous analyses
to be avoided by assuming zero pressure in place of the negative pressures
in the oil film. Hori used the long bearing approximation to Reynolds'
equation and applied the Hurwitz criteria to the linearized equations
of motion.

Hori showed that the bearing is not unstable at all speeds as
indicated by the Robertson analysis, but has a finite stability
threshold which is a function of beafing clearance, transverse shaft
loading, journal speed and viscosity. He presented dimensionless
stability plots which show the influence of various bearing parameters

on rotor stability, One important aspect of Hori's analysis is the
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influence of the transverse bearing load on stability. For example

Hori states that in the case of a vertical balanced rotor in which

the transverse load due to gravity is zero, the journal will be unstable
at all speeds. This important stability characteristic of vertical
shafts has been verified by the author in thié investigation. Hori
also shows that if the transverse loading is sufficiently large so as

to increase the operating eccentricity above 0.8 for the plain journal
bearing, the system will be stable regardless of shaft flexibility.

Sternlicht (27) presents a summary of nine earlier papers that
deal with both compressible and incompressible fluid film journal
bearings. The concept of force transmission and its effect on the
overall rotor system performance is discussed. Synchronous, half, and
fractional frequency whirl, critical speeds, and resonant whip are also
briefly discussed.

Reddi and Trumpler (28) in 1962 examined the stability of the
360° full journal and the 180° partial-film bearings. End leakage
factors were applied to the film force expressions and the resulting
equations of motion linearized and examined for stability about the
equilibrium position by the Routh criteria. The complete equations of
motion were programmed on a digital computer and the resulting orbits
presented for the 360° journal.

Reddi also demonstrated that if bearing cavitation is not taken
into consideration, the bearing will be unstable at all speeds. For
example, he shows that for the case of the full film 360° infinite
length bearing excluding cavitation, the journal motion will always

become unstable and form limit cycles. He also shows a number of

11



cases in which the bearing fails for high loading and low speed

operation in which the stability data of Hori and Booker indicate high
stability if cavitation is included. This behavior has actually been
observed in practice. Pinkus reports on stabilizing a bearing by reducing
the oil inlet flow thereby changing the cavitation boundary conditions.
Thus the cavitation boundary conditions of the bearing will greatly
influence the stability characteristics of the system. The complete
cavitation equations obtained from the Navier-Stokes equations are

time transient and have not been completely investigated?

A stability chart was presented for the 180° film bearing which
indicated regions of stable and unstable operation on a plot of
Sommerfeld number versus a speed parameter. The conclusion reached
was that the designer may expect large machine vibration and possible
bearing failure unless the equilibrium eccentricity ratio remains
> 0.76, i.e., a heavily loaded condition, or the speed parameter
Q = Jr%§?< 0.22. This is equivalent to the stability parameter of the
author of WS = 1.38. Badgley and Booker (30) show that the short bearing
is stable for values of WS < 2.50

Alford (29) in 1965 presented a completely new concept as to the
possible causes of instability in turbomachinery. Forces arising from
two sources were considered. These were ka) forces due to circumferen-
tial variation of static pressure acting on the cylindrical surface
of the rotor (particularly within labyrinth seals) and (b) forces due
to the eccentricity of the rotor causing variation of blade-tip
clearances which results in variation of local efficiency and creates

unbalance torques. These considerations are of extreme importance and

* Cole, J.A. and Hughes, C.J., "0il Flow and Film Extent in Complete
Journal Bearings," Proc. Inst. Mech. Engrs. (London), Vol.170, No.17, 1956.
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are a key factor to instabilities of high-speed axial compressors and
turbines. It explains why some units run very smoothly at no load
test conditions while serious stability problems arise when testing at

partial or full load conditions.

Gunter (7) in 1966 after giving a complete discussion of the
background and state of the art, examined the single-mass unbalanced
symmetric rotor for synchronous, nonsynchronous, and zero precession
and the effect of gravity. The analysis included the influence of
support flexibility and damping on stability. Various stability maps
were presented for the case of symmetric and unsymmetric bearing support
flexibility. It was shown that foundation asymmetry alone_could increase
the stable region of operation considerably.* The experimental orbits
obtained by Kushul** of precession above the stability threshold indicated
that the precession rate was constant and equal to the rotor critical
speed,

The stability of hydrodynamic bearings was also examined and
confirmed the findings of Reddi (28). Whirl orbits for both linearized
and nonlinear bearing characteristics obtained by analog computer
simulation indicated the formation of limit cycles in the nonlinear
case whereas the linearized equations gave whirl orbits that were
unbounded.

Badgley ( 3Q) recently presented a nonlinear transient analysis of

*This explains the conflicting reports of Pinkus versus Poritsky,
Hagg and Warner, as mentioned earlier in this discussion.

** gushul, M.Y., "The Self-Induced Oscillations of Rotors," (Trans.
from Russian.) Consultants Bureau, New York, 1964.
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a plain journal bearing by simulating the whirl orbits on a digital
computer by forward numerical integration of the equations of motion.
The approximations to Reynolds equation used in that analysis were the
short bearing (Ocvirk), the long bearing (Sommerfeld), and the finite
length be;ring using Warner's end leakage correction factor. Badgley
assumed a balanced, unloaded, horizontal rotor including film cavitation.
He examined the orbit behavior of the shaft for various disturbance values
and showed that the stability threshold at high eccentricity is reduced
by large initial velocity disturbances. Badgley did not include the
influence of rotor unbalance or external loading. In the author's
investigation these effects are included and it has been demonstrated
that these loads can have a profound effect on journal stability.

Also of considerable importance is the magnitude of the bearing
forces developed during whirl. Of the numerous papers presented on the
subject of bearing instability, no mention has been made of the actual
forces developed by the system. The force transmitted or the dynamic
transmissibility coefficient developed by a bearing is an important
factor in the design of a bearing which has been ignored in the past.

The most recent contribution to the analysis of nonlinear whirl
motion of a journal bearing was the paper presented by Tolle (30)
at the ASME 1968 Vibrations Conference. In this analysis the author
attempts to calculate the pressure profile by means of a series
expansion. The equations of motion are expressed in rotating
coordinates and are integrated on a digital computer using the fourth-
order Runge-Kutta procedure. Since Tolle has considered a noncavitating

film the journal motion is unstable at all speeds, forming limit cycles.
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This analysis, similar to Badgley's work is also limited in its scope
and does not consider the influence of external loads on the system.

These authors have contributed greatly to the understanding
of journal bearing lubrication problems, however, at present there has
been little data published on the transient nonlinear motion and forces
transmitted in a journal bearing.

The following analysis will combine the nonlinear hydrodynamic
fluid-tfilm forces to the dynamical equation of motion, which may then
be numerically integrated to obtain the trahsient behavior of the journal.
Horizontal, vertical, and unbalanced journals will be considered as
well as the transient response to loading, both constant and cyclic
(rotating and unidirectional). The instantaneous whirl and forces
transmitted to the bearing are easily obtained as a result of the

method of solution.
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CHAPTER III

ANALYSIS OF THE SYSTEM

3.1 Introduction

This chapter contains the derivation of the equations of motion
for the journal bearing. Figure 3.1 gives a schematic of a typical
journal bearing. The clearance between the journal and bearing has
been greatly exaggerated to clarify the representation of the bearing

parameters. The journal center, is free to move about {n the

oj,
imaginary clearance circle depicted by the dashed circle in Figure 3,7,

The radial displacement of the journal center, o from the bearing

3
center, Oy is denoted as the eccentricity, e, of the journal, and
when divided by the clearance, c, the eccentricity ratio, €, may then
take on values only from zero to unity.* It is therefore possible to
represent the journal motion by a point moving about in a unit clear-
ance circle, where all displacements are made dimensionless by dividing
them by the clearance. This representation will be used extensively
throughout the following analysis.

Reynolds' equation for the plane slider bearing is derived from
the Navier-Stokes equation for incompressible fluids. This equation
is then further modified for journal bearings for both rotating and

fixed coordinates, The short bearing assumption is discussed and

compared to a finite width bearing solution. With an expression for

*Unity represents bearing failure, while a value of zero has
the journal perfectly centered in the bearing. See Figure 3.2 for a
typical force balance.
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the fluid film forces, the equations of motion of the journal are

easily obtained in the fixed coordinate set. A derivation of the

instantaneous whirl and radius of curvature is presented and finally
some import parameters used for bearing analysis are presented to

clarify the terminology of the chapters that follow.

3.2 Derivation of Reynolds' Equation;

Reduction to the Short Bearing Equation

The Navier-Stokes equations can be expressed in vector notation

as:

P%%r\'ypmw-[‘svcv.unvza) (3.1]

For the purpose of this particular derivation, the incompressible
fluid film between two flat plates of length 1 and width b, separated
by some small distance, h = f(x, z) will be examined** If in addition

the body forces are neglected, Eq. [3.1] may be expressed as follows¥***

PSE = -9P +u v [3.2]

Furthermore, if the ratio of h/1 is restricted to be much less
than unity, i.e. h/1 << 1, it may be concluded that the reduced
*
Reynolds Number,( ) Re*, is much much less than unity and it is hence

possible to neglect the inertia force terms on the left of Eq. [3.2].

(*)Discussion of this quantity may be found in Section 5, page 41.
** See Figure 3.3.

***This equation can also be applied in journal bearing analysis
for the case of a compressible fluid due to the order of magnitude
of the term ¥(¥v.4).
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3.3 The Plane Slider Bearing
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Then Eq. [3.2] may be expressed as
u
. BP ALB [3.3]
O=- BP 3
a\é [3.4]
P 22 (3.5]
O"*gg'f,u. 3 .
2 a2
where the terms —5 T3 have been neglected, since they are higher
OX oz
order terms. By restricting the pressure to be constant across the

film, i.e. 3p/3y = 0,

[3.5] to obtain expre

it is now possible to integrate Eqs. [3.3] and

ssions for the velocity profiles in the x and z

coordinate directions.

du 1 9P 7y
f[aqu M I.] %
ou 1 9P
or % e '\d.+c‘q
and u(%):msi‘l& +GY+ Cy [3.6]
The next step is to impose the following boundary conditions:
At y =0, u =1, [3.7]
Therefore,
Ca=Uy, and
1 oP ;2
Uos W(h) « Q,ualh v h+cy
Up-UWy { 2P
or, Ci= T—‘ ZMaxh

21



Substituting these values of 4 and <) into Eq. [3.6] results in:

w(y) = w ax (Y- h) +b-;f§—u‘+% Uq [3.9]

In a similar derivation, it can be shown that

W(y) = Z{M%‘;H(’\é h)+ w1+3£—wz [3.10]

where w = w] at y =0
w = W2 at y =h

The remainder of the derivation consists of integrating the

continuity equation across the film. Continuity is expressed as:
a -
L4+ v (pl)= 0 [3.11]

Integrating this expression fromy = 0 toy = h,

fh{a_(g_w__ 20, d(PW ‘o(Pw) }d%

3% ot [ @

[3.12]

where Eqs. [3.9] and [3.10] are used for u and w in this equation.

Doing the indicated integrations yields the following equations:

f a(pv)c{yzpvli‘ =_P(Vz—V1) , Where P*‘F(H) [3.13]
j%ﬁd T IR T

o % t - 3t%]o= 2t Rooy s f) [3.14]
jO x4t - alf Pudy - pUTE [3.15]

%([i%ﬂ%i ] ax[’Ph(uHUz)] Puz%h{
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Likewise,

f a(Puu) ~_%[lp 3P h}] ab[ ph(w,»fwl)-] PW233 [3.16]

Combining Eqs. [3.13] through [3.16] and multiplying by 12 results in

the following equation:

Q[P OP 131 3 [p 2P
g 5h ]*g[u 5 Rl= 1en-vy +nh %

ah]

{ph u1+u1)]+6 [(Jh(wh»wz)] ’QP{“’Va‘i"Wiag [3.17]

Inserting the conditions of:
p = constant

w] = W2 =0

dh/3z = 0,

the following form of Reynolds' equation may be obtained:

W ap £ op oh

+ = {2(Va-Vy) + 6(W,-U +oh 2 (u 3.1

[;L ax} }[AL bb] \ (V2 ‘? (Ua-Wo) 5 Ex( 1+U,y) [3.18]
Squ"je' “WeJJe' Stvglc"{

It is now desired to relate this solution to the geometry of the

journal bearing. The first approach considers rotating coordinates, in

which the film thickness* may be expressed as (see Fig. 3.4):

h(&) = c(1+€ cosE) [3.19]

*For derivation see Reference (32), p. 104.
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Linear combinations of the following components of motion will

be considered.

a. Rotation of journal about o,, at w

3 3
b. Rotation of bearing about Oy at w .
c¢. Radial motion of oj along the line of centers.

d. Precession of oJ about oy with angular velocity, wp: $.
If the film thickness is "unwrapped" the velocities due to "3"
and "b", above may be expressed by the following components:

U.I - (R + C)wa wa

U, = R cos ~ R
2 wj a wj

V1 = 0

- b - .. l‘l
V2 ij sin gyvaRw; wj 30
Since,

1
tan(x) = gx = " J6°

and for g << 1,

By neglecting the stretch effect in Eq. [3.18], the contributions due

to rotation wy and mj are given by:

1o . | "
[59-( 7P)ab = (RWy-RW)) & 55 +200; 35

L)
[—‘g V‘(',Zf VP)]a.b = (Wyt wz)%%, (3.20]

For the radial motion along the line of centers it can be
shown that:
M /
U2 = ¢ 5ing
M ’
V2 = ¢ COo8f
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Therefore,
)
[%6.(%?;3)] (GSme);%g +2¢ CosB

but by differentiating Eq. [3.19],

ah gg[c (1+ €Coso')]

or

oh .

35 € Simo
and,

o

FT € Cos®
Hence,

]: V(MVP)] *e Sme/{+ 2 Coso']

ah
= 25F [3.21]

For precession, it is known that every point in the journal has
velocity ep and is directed normal to the line of centers. Therefore

the following velocity components are due to precession:

[}
il

2 -epcosh

<
[

2 eésing
U, =v, =0
Substxtutlng these expressions into Eq. [3.18] yields:

["7(%? }d /Rq>c°s 'alh +ze¢3me

* o290 55 [3.22]
Combining Eqs. [3.20], [3.21] and [3.22] results in:

[e AT Lol

é[v.(f—j 97)] = (wet wj-24) be.»«&% [3.23a]
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or:

1742 (R2ary. 2 /R2op b ok
é{aé@'(ﬂﬁé‘t)*ﬁg(zaﬁ]’ (Wot 0j-24) 55+ 2 3E (3.23b)

This expression, i.e. Eq. [3.23], is the Reynolds equation for a plain
journal bearing using rotating coordinates, where 6 is the angle
measured from the line of centers in the positive coordinate direction.
This form of Reynolds equation is the expression that most of the work
in this field is based on. However, for the purpose of this investi-
gation, the use of Eq. [3.23] was considered to be unnecessarily
complicated due to the choice of coordinates. To avoid the complexity
of coordinate transformations, the following derivation in fixed
cartesian coordinates is presented.
The following unit vectors will be used to express the derived
velocity components (see Figure 3.5):
i
i

INg= - CosB1 — Sine §

-CsBINg — Sind ing

- SinBIng + Cos B ng
Ng ==~ SinB 1 +Cos 6] [3.24]

The velocities of the bearing and journal centers are as follows:

——

Voo = 'iqz + %xé
Voj = Xl + né,_}

The velociﬁy of point "Q" 1is:
Vo = Vob+ @, X R

-

= igt *‘l}(;ﬁ-RQ)blne
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3.5 Journal Bearing in Fixed Cartesian Coordinates
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and also:

V@ =1 Ing + U, Ing

or

Vi = Vg.ing = = XiCosB -, 5ind [3.25]
and

Wy = Vg.iNg = WpR - Xy SinB +4, Cos6 [3.26]

For point "P", it is necessary to relate the velocities to

V2 and U2.

The Rw, component is not in line with the wa component; they

]

differ by the angle a. For small displacements these are related

small angles and it is thus possible to approximate ¢ as follows:

ah 2k _1 2h

t - =1
ANk s X X 3% R o

Also,

fan = Sinx =~ oc

For the theta direction:

Velg = RWj Cosx = RW;

and for the radial direction:

oh

00

So, it is now possible to express the velocity of point"P'" as:

Vel, » Rwa' Sink = W

o

Vp = Xt +'%2} +Rwé\ne+w3%ie g

Therefore,
Wy =Vp.INg « -Xp Sin® +Y, Cosd +RWj [3.27]
and:
= . C e oh
V2= Vp.ing = =Xy Cos® -‘a,_ Sin® +(1)3 38 [3.28]
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By neglecting the stretch effect of Eq. [3.18], i.e. h L,{ [U+ 1,1,
o N

substitution of the appropriatc velocities into that equation gives:

'1’[ -—-vpﬂ (w,- uz) ;61 +2(V2-Vi)

91
* (WptWj) 35t (% - x1) (- 2Cc»s.9+‘1k%'1 $ing)

= (Y2-y,) (25in0 +—R— ’bﬁ Cos ©)

In addition, by neglecting the R 36 terms,

L18.(E00) )= (worio) T 4 o) (200)-(G5i) (250m0)  13:29)

But for small deflection, the film thickness, h, is given as (see

Fig. 3.5):

R C-(X-X0) Cos® -(¥2-¥)) Sine [3.30]

since from Eq. [3.19] we can write:
he)= c- ecos (8 -150-9)
= C-eCsO Sind - &5ine Cos(‘)

where:
€Sind = X=Xy, €Cosde Yy-yy

It is now possible to rewrite Eq. [3.29] as follows:

h®dp R 2P voh  _2h
(R EREL e Bl

= (Wp+ @) [(Xa-X)Sin - (4, -y.) Cos 6~ ( Xa-X1) (2 Co58)-( %2~ #1)(2 5in6)

- It must be remembered that in this equation the "g§" is
measured from the fixed x-axis and should not be confused with the

rotating coordinate set where the "g" {5 measured from the line of
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centers.

Two basic approaches to the solution of Eq. [3.31] have been
reported in the Literature. If it is assumed that the journal bearing
is very long, then it is possible to neglect the fluid flow and
pressure gradients along the z-axis and hence reduce Eq. [3.31] to:

3
or ’aa‘e(i]T $6)= (Woray aa% *2%%* [3.32]
This solution is known as the Long Bearing Solution and was first solved
by Sommerfeld who used an adroite substitution and succeeded in
integrating the equation (1).%*

On the other hand, if it is ;ssumed that the bearing is relatively
short, the appropriate approach is to neglect the flow in the radial

direction due to pressure gradients and arrive at:

12 (hdapy oh . _ah
55 (i 35) = (woorwp §g +25E (3.33]

which is known as the governing equation for the Short Bearing Solution.
This approach to Reynolds' equation is the basis for the computer
program and resulting analysis to be presented in the following sections.
To have a better understanding of when the above assumption is a
valid one, the solid curves in Figure 3.6 were drawn from data for a
finite full journal bearing.** That data was reported to have come

from digital computer solutions of the general Reynolds equation. In

*Reference in Bibliography, p. 42,

**From Reference (1), pp. 86-88.
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addition, the corresponding Sommerfeld Number** obtained from the
short bearing solution is plotted for the same length to diameter
ratios. It is easy to see that the assumption is very good for L/D
ratios of 1/2 or less, or for L/R < 1. It is also apparent that mocre
deviation exists at larger eccentricity values for L/R > 1, whereas
for smaller values the agreement is very good indeed.

The reason for the deviation in the short bearing solution has
been explained by Ocvirk (13 ) to arise from the higher pressures
predicted due to neglecting the radial pressure flow in the journal.
However, by realizing the limitations of the solution there should
be no confusion about the results and conclusions obtained from the

given theory.

3.3 Dynamical Equations of Motion

The Reynolds equation has been derived in the previous section
for the plane slider and by proper substitution and assumptions, it
has been reduced to the following equation which is valid for a "short"
journal bearing:

P h
5 (G 3) = (wprw AL [3.34)

In fixed coordinates, the film thickness, h, is given by:

h= C-xcoso -4 5in® [3.35]

®See Section 3.5, p. 42 for explanation of Sommerfeld Number.
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This equation is valid for a journal bearing that has no axial
misalignment and was derived by considering small motions in the x and
y directions to be linearily related. 1In addition, by limiting the
motion of the bearing to rotation, Wy all displacements will be
relative to the bearing center, 0, -
Equation [3.34] can be integrated directly and by applying the

boundary conditions:

P(8,0)= P(B,L)= O ' [3.36]
to evaluate the two constants of integration, the following

equation results:

3 (3L h .ok
P(e»})=-——73——-L[“0b+uy)ae‘+2 Bt] [3.37]
From [3.35],
h
%—e- = ISLne-‘\éCose [3.38]
and:
M % s -1 S5m0 [3.39]
3t 450
The increment of force on the journal is given as:
AF = P(0,3) Rdody ing
where:
Na = -Cos6 L - Sin}
Therefore,
aFx = (6F.1)l= -[P(8,3) Rdedy cse) L [3.40]
and:
afy = (8F.F)3 = -[ P(6,5) Rdedy5in6]} [3.41]
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where the total force component is:

Fx = -H P(6,3) R Cos@de dé’

and:
Fy= -{f P(8.3) RsinOdodsy
The result of integrating over the length of the bearing and

substituting Eqs. [3.38] and [3.39] leads to the following equations:

{Fx} , MRL3JZ"((DJ+(0(>)(lSLne-}Cos@)-Z(T'.Ooseﬁv‘}_SCne) {Cose}de [3.42]
Fy 2 Jo (€-XCos8 -4 Sing)> Sind ’

The integral of Eq. [3.42] must be integrated very carefully
since a subambient pressure will not be permitted to exist in the fluid
film. This follows from reports on experimental test rigs as discussed
by Reference (1), page 435. The approach to this particular integral
is discussed in more detail in Chapter 5, page 53.

It is possible to put Eq. [3.42] into dimensionless form if
the following representation is used:
x=% ,Y..‘ét , W wb*“’i”.“c%)j ,\'(-C%j , ok —(’(‘3—
then [3.42] becomes:

[3.43]

am . .
{F’x} . M-PR&)J (X-2YX) Sin@ - (Y + 2X ) Cosd C‘”e}d
Fy 2 ) (1~ XCos8 —YsinB)> sing § @

The equations of motion of the journal can be derived by

considering Newton's second law.

(2 Fhxyy = mj %y
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A position vector to the center of mass of the journal is:

P = (X+ e Cos@jb) T +(y+ ewsinwjtyf

where the mass center is located a radial distance of e from the
98

geometric center of the journal. Then the acceleration is given by:

. 7 - e -
Rm = (X-euwj Coswit)i + ('l}‘euw% 5‘“‘95t)3
therefore:

™m; (;(-CM 00’% Coﬁwa't) = {2 F)x

. 2 . .
m; (Y - en w; Sinwjt) = (2 F)\aL [3.44]
where the right hand side of the above equations represents all
loading on the journal, including the forces given by Eq. [3.42] that

are developed in the fluid film. By letting:

Wj~a,al-T, g%?.;&u

and dividing through by m cQ?,the equations become:

3

dix F MRL® = ..y FX 4
Jz = BuCesT YT Cos(T) + Dcagn Fx (VXY ) bammpa + o (3.45]
dY bt + E s+ BRED vk 9+ B - (3.46)
g7z = b ST e ST Y g mas T T imen ’
where:

F0 = Rotating load at some multiple of the journal frequency
FX, FY = Constant loading in x and y direction respectively
Also, other loading can be added as noted by + -« -

The above equations are for a vertical journal bearing since

we have not included the gravity loading in the equations of motion.
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If it is assumed that gravity is acting in the negative y-coordinate
direction, then the term (-g/c(f ) must be added to [3.46] to account
for this affect.

The solution of Eqs. [3.45] and [3.46] will give the journal
orbit as a function of dimensionless time, T. Numerical methods will
be used to integrate these equations of motion forward in time. The

method of solution will be discussed in detail in CHAPTER V.

3.4 Journal Precession Rate and Radius of Curvature

When a journal bearing is acted upon by some unbalance force
or other cyclic forcing function the journal tends to move in an' orbit
due to the forces acting upon it. If the orbit encloses the center
of the journal then it is possible to think of the distance from the
bearing center to the journal center as the radius of the path and
the angular velocity with respect to the bearing center as the whirl
frequency. Refering to Figure 3.7, these quantities would be radius,
e, and angular velocity é.

These values may be expressed in terms of the displacements
and velocities, X%, y, i, § by the following procedure. The velocity

of the journal center may be expressed as

—
. -

V., = x 1+
j ]

et +ebg
The relation among the unit vectors is as follows:
¢, = Cosd)z + S‘md)}
¢ = -S¢n¢z+cos¢3
L= eCsd ,y- eSind
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3.7 Typical Journal Trajectory Illustrating the
Instantaneous Radius of Curvature
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So,

Vj-do + ed - Xi.¢p +4].¢o = - Sind X+ Cosd

Therefore,
_ € (Cosdy -Sindx) _ xX§-yx
T e e el

2 2

2
or, since e =x + vy
then,
(i)_ XY - YX
= _iéx%i_
In dimensionless form:

S xY-vx

YR CFS i (3.47]

where
X =x/c, Y = y/c

and

x/cQ, Y =y/cQ, with(Q = wy as before.

X
The radius, e, is given by:

e= Cx[xleyz [3.48]

However, it is obvious that [3.47] has little meaning if the

journal orbit does not enclose the bearing center, "ob".

The equations for the instantaneous radiugof curvature, p»
and angular velocity § will now be developed.

The velocity can be expressed for this purpose as:
Vl = Vet_ - Pth
where:

p = instantaneous radius of curvature

6 = instantaneous angular velocity about o;
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The acceleration is expressed as:

G« 5 (ven = Ve + viE

V'l
= Ay ¢t*-Fr ¢
But since:
Q=ii+%§
and:
- Vz .'-‘l e A
Q;-én = T LR ML N

The new unit vectors are determined as follows:

V=ve o=xi+ y]

therefore,

1 oo+
¢ =V[xi+yj]

t
and:
Po=koxé =lIXE-yil
n t v
Hence,
i kn = - y/v
and:
T kg =

So, from Eq. [3.49],
v/ = rrory

Solving for p and é = V/p results in:

VIE x - X9

o
[l

and

o+ 3P
since,

v2 - iZ + &2
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In dimensionless form, the instantaneous whirl ratio is given by:

¥2 [3.52]
+Y

Do -
.
N

This expression is meaningful for any orbit path the journal
might traverse and will be easily calculated since it involves
quantities readily available in the method of solution of the journal

orbit.

3.5 Derivation and Explanation of Terms Used in Journal Bearing Studies

As the theory of lubrication has developed several important
equations and groupings of terms have evolved that are used frequently
in this field. One of the basic assumptions that has been used in the
derivation of the Reynolds equation arose from considering the ratio
of inertia to viscous forces in the incompressible Navier-Stokes
equation.

p%% = -VP + M9y

Considering the x-direction, the result is

. 2
R R e - S (3.2
where
Re* = modified (reduced) Reynolds Number
U = velocity
L = characteristic length

h = film thickness

kinematic viscosity

<
[]
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The distinction has been made to call this expression a modified
Revnolds number since the expression frequently used as the Reynolds
Number in fluid mechanics work is given as: Re = UL/v.

From this relation it is seen that:

Re* = Re x (%)2. [3.54]
Another much used expression known as Sommerfeld's Number resulted from
the work of Sommerfeld in 1904 when he presented the exact solution
to the long bearing assumption form of Reynolds' equation. The result
of this work was an expression for the loading of an idealized full

)

journal bearing. The result can be expressed as

r\2 AN (2+4n?) [1-n?
(E) =N = nin [3.55]

where

N' = journal speed (RPS)

n = eccentricity = efc = ¢
r = journal radius = R
P = load per area of the projected area of journal

W/(L x D), D = 2R
The expression,

ALN' (8_)2
P
is known as Sommerfeld's Number (S).

An equivalent expression can be derived for the short-bearing

assumption form of Reynolds' equation. Using polar coordinates and

making use of certain integral formulae due to Sommerfeld, 1t is

(*)See Reference (32), p. 122,
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possible to successfully integrate Reynolds' equation to obtain the

load capacity. This result can be expressed (1)* by

) = S(LD)2= ni—:i[-ne:’zzfe’)HGCl]Vi (3.3]
The same expression has been derived by Ocvirk (13) and is referred
to as the 'capacity number" for the bearing in that report (see
Figure 3.8).

The attitude ¢ (see Figure 3.1) can be found by forming the
ratio of the tangential and radial load components, the result of

which is given by (1)**

i

tang- 2 “'fz) : [3.57]
The value of P, the projected load is usually considered as the

effective journal weight divided by the product of length and diameter

of the bearing. When considering unbalance loading effects it may

be helpful to form the Sommerfeld Number based on the rotating load.

In doing this, P becomes the quantity meuwz, the magnitude of the

unbalance loading. The resulting expression is:

AN, R\
Sy = 2 LAl
us g () [3.58]

where

PU =(meuwj2)/(L x D)

SU = Sommerfeld Number for unbalance loading

*Reference in Bibliography, p. 49
**Reference in Bibliography, p. 92 has Polar plots of eccentricity
for various L/D values.
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The stability* plots for journal bearings that appear in the
literature are usually plotted with a dimensionless speed parameter
as ordinate and eccentricity ratio, ¢, as abscissa. The speed
parameter may be thought of as the square root of the ratio of the

unbalance force (with eu = ¢) to the journal weight. That is:

2
’mcw-
Wsg= —m%—’ [3.59a]

or,

Ws = w«‘/[.?:_ [3.59b]

where J;7:1 has units of sec.-.l and, as stated previously, makes
the speed parameter dimensionless.
An important consideration when designing bearings is the
magnitude of the actual forces transmitted to the bearing surface.
This quantity can be calculated from Eq. [3.43] and could be
represented as:
where Fx, Fy = magnitude of fluid-film forces in the x and y
coordinate directions respectively.
It is possible now to form two dimensionlegs force parameters, to be
denoted as static and dynamic transmissibility, given by:
TR = P [3.60]

and,

TR = %/(me“mjz) [3.61]

*See CHAPTER IV for discussion of stability.
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These ratios give an indication of the isolation of the journal
from the support system. A value of 1 is equivalent to a system on
rigid ball bearing supports, whereas for TR < 1, there is an improvement
of performance due to lower forces transmitted. If TR > 1, then
the journal bearings are actually developing higher forces than if the
system was mounted in rigid ball bearings. This later mode of operation
is not desireable and should be avoided by the designer. If this is

not possible, the transmissibility should be reduced to the lowest

value attainable.
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CHAPTER 1V

STABILITY ANALYSIS FOR SMALL DISPLACEMENTS

The equation for the fluid-film force components has been
derived for the short bearing model and is given by Eq. [3.43]. It is
now possible to obtain from this equation the stiffness and damping

coefficients which are given as:
Kax-3x; 5 e w2 5 e [4.1]
Ch=-3x. b Lru2 5 jean [4.2]

These coefficients can now be inserted into the equation of motion

of the journal and a stability analysis performed. The equation to

be examined is given as follows:

Xt + Cij¥ +Ryx =0 [4.3]

2
= mcC W, = CK; - wCC
Lohere = —==7) - 2 . ¢
MJ w hd KI.J mdw ’ C‘J W
The assumed solution is of the form:

Xi= AeM , Xp= BeM

Making these substitutions results in the following equations:

)\2 + 5“ A AN Ru En_>\ + R(Q_ “11A o) [4.4]

6-“ )\ + \22‘ >\2 + 527)\ + Rll B O
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i nsl

By oxpanding the determinant of coecfficients the following fourth order
cquation is obtained:
= = > v - = =~ =
N+ (i +Ca )N + ( Ky + K2 +Ci Co2 - Cz Car) N
+ ( Ky Cqyp + Kag Cyy “K\'Lé')_( —kl\ét'l))\+(R'I'LRH—R\’LRM):O [4.5]

In general terms the characteristic equation can be expressed as:

N
ZAN—I A= 0o [4.6]
1:0
For N = 4,
A4 + A3)\ + AQ_)\Q +A‘>\5 + Ao>\4 =0

The stability condition is given by (7)*
2 2
A ARy > AGAT + AcAs [(4.7]

A stability analysis has been performed by the approach just
described by Mr. Pranabesh De Choudhury.¥¥ His analysis considered
stability about the equilibrium eccentricity and attitude angle
considering the journal center to be initially at rest. The stability
map resulting from his work is shown in Figure 4.1 and is comparable
to that of Badgley and Booker (30) who examined orbital plots for the
journal center to determine whether or not the system was stable (see

Figure 4.2).

#reference in Bibliography, p. 124.

**Doctoral candidate, Mechanical Engineering, University of
Virginia, doing research in stability of rotor systems.
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The criteria for instability that they used was an increasing
radius arm as the orbit tracked out the journal center path.

These approaches to the problem of stability have only considered
the horizontal, unloaded journal. A loaded journal will be shown* to
exhibit a greater area of stability on the stability map, while an
unloaded vertical journal will be unstable over the entire range of
the map. These are important facts that are not obvious from a plot
such as Figure 4.1, or the similar plots of Badgley and Booker, Figure
4.2,

The analysis presented by Reddi (28) for the 180° long bearing,
with end leakage considered, has given a lower threshold speed than the
stability analysis using the short bearing equations. The threshold
curve resulting from their analysis has been converted into the
parameter used by Badgley and Booker for the special case that the
loading is due to the weight of the journal (rotor) only. The Reddi-
Trumpler threshold speed is less than that of Badgley-Booker but the
limit of eccentricity at which the journal is completely stable is very
nearly the same. This value is in agreement with Hori who gave 0.8 as
the upper limit of eccentricity past which the journal is always stable.

In all of the various analyses of stability, only the threshold
speed of unstable motion 1s predicted. In an actual bearing operated
above the stability threshold speed, the journal does not fail but
forms a finite limit cycle which increases with speed.

In this analysis, the motion of the journal and forces

*See CHAPTER VII, page 95 , and Figure 6.14.
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produced when operating above the stability threshold will be examined.
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CHAPTER V

METHOD OF SOLUTION

5.1 1Introduction

The analysis presented in CHAPTER III resulted in the equations
of motion for the journal bearing in the fixed cartesian coordinate
set. The present chapter presents computer drawn three-dimensional
plots of the pressure profile resulting from the Short Bearing Solution
derived in CHAPTER III. To obtain the fluid film forces the expression
for the pressure must be integrated over the bearing surface. A brief
discussion of numerical integration is presented to clarify the manner
in which the forces just mentioned are obtained.

The equations of motion for the journal are two coupled, non-
linear differential equations. A discussion of numerical methods for
the step-wise integration of this type of differential equation (initial
value problem) is followed by a description of the computer program that

has been developed to solve the journal bearing equations of motion.

5.2 The Fluid Film Pressure Profile

The pressure in the fluid film was given in fixed coordinates by
Eq. [3.37]. Substituting Eqs. [3.38], [3.39] into Eq. [3.37] and

expressing the result in dimensionless form gives:*

=_ P(8,3 (C\2 = -XSin® +YCosO + 20 { X CosO+ Y Sind)
P- T (— = n - [ 039 n
wa*M) L) enz{i-2)x (1-XCos ® -Y Sing)®

where:

z: L, xR Xy adx
ErT 0 e T F gt [5.1]

*Note similarity of dimensionless group to 1/S, the inverse of
the Sommerfeld Number.
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If no values of negative pressure are allowed to exist in the
tluid film, then all P's less than zero are equated to zero. The above
equation was programmed on the digital computer and the results plotted
via a Calcomp Plotter unit. Various cases were considered and are
presented as Figures 5.1 - 5.7.

The values of the dimensionless displacements and velocities are
given at'the top of the figures. An end view of the section at the
bearing midspan is given in the upper left corner with the pressure
profile represented as radial lines. The center figure is a 3-dimen-
sional plot of the "unwrapped" pressure profile. At the bottom of the
figure is the film thickness, H, plotted versus angular distance, §.

The maximum dimensionless pressure increases as the journal
moves from near the center (Figure 5.1) out to X =0.2, Y = -0.10
(Figure 5.2). Figure 5.3 shows the uncavitated pressure surface for
the case of Figure 5.2. The negative pressures cannot be sustained in
the fluid film and therefore cavitates (for discussion, see page 62).
A prominent pressure peak is noticed as the journal moves out to
X =0.5 Y =- 0.7 (Figure 5.4). 1In Figure 5.5 the case of Figure 5.4
is given a small velocity which results in a slight increase of peak
pressure.

In Figure 5.6 the journal has been shifted to X = -0.9, Y = -0.05
and is accompanied by a shift in the pressure profile. Figure 5.7 has
been given the condition of synchronous whirl* at an eccentricity of

0.5. All cases plotted were fora =1, i.e. wy = 0.

*The journal center is precessing in the bearing at the journal
rotational angular velocity.
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5.1

Pressure Profile, Pressure Surface, and Film Thickness

for X = 0.05, Y = -0.02, X =Y =0
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5.3 Integration of the Pressurce Profile

The forces arising in the fluid film have been expressed as an
integral over the circumference of the journal. The forces are given

by Eq. [3.43) and are given below in the following form:

3 YL . .
{Fl} o MALRW (2¥Y & -X) Sin® + (Y+ 2XX) CosO {COSB)IC‘B [5.2]

Fy 72Ct (1-XCosO-YSinB)3 Sin®
=}

The expression under the integral is now representative of the pressure
in the film and hence will be equated to zero when its value is less
than zero. This is equivalent to keeping only those pressures that
are greater than ambient (i.e. larger than zero, since the pressures at
the bearing ends are assumed to be atmospheric and hence it is gauge
pressures that will be used in the calculations). This will avoid the
subambient pressure contributions that appear in closed-form solutions
and the nced to calculate the extent of the positive pressure region.
The exact region of film cavitation and the resulting pressure
therein are by no means well understood or well defined in the literature.
Reddi-Trumpler (28) states that cavitation occurs at or near the
vapor pressure of the fluid film if L/D > 1, while reference has
previously been made to Pinkus and Sternlicht (1) who reference test
data where the film cavitates at 0.13 psi below atmospheric (or the
pressure at the journal ends). The results of the work reported herein
are based on the latter argument. However, the nature of the method
of solution makes the task of dictating cavitation pressure as simple

as changing one card from the computer program deck., Ocvirk (13)
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argucd that in the absence of high datum pressures, the effect of any
negative pressure (not exceeding atmospheric) could be neglected as
being negligible in comparison to the positive pressure region.

It is possible to use numerical methods of integration to solve
for the film forces from the above integral. It is only necessary to
choose an appropriate me thod from the various ones listed in numerical
analysis texts (34, 36). The most basic approach is the well-known

trapezoidal rule, which can be expressed as follows:

L -
{(X(n)-}' (XL) .
5 fexydx = 2[( 5 i )(Xm-Xc)]
Xe ".‘0
where: N = number of subdivisions

X =1L
n
By choosing a constant increment of X, it is possible to express the

trapezoidal rule as:
Xn '

f fodx - AX[ fL;Q+)((X')+{(x2H ey }_(;(_m]
Xo

The error of the above formula is of course directly related to the
increment, AX and hence the number of points chosen to evaluate, as
well as the order of curve that is being integrated.

Various other more accurate formulae exist, such as Simpson's
and Weddle's Rules which are two of the series of Newton-Cotes formulae.*
Less known is the method of Romberg (34)** which uses the Trapezoidal

Rule and an extrapolation process to improve the accuracy of the

*See Reference (36), p. 137 and (38), p. 110,

**Reference in Bibliography, p. 130.
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calculation.
For the purpose of integrating the pressure profile, a form of

the following Newton-Cotes quadrature formula was chosen:

e‘ h
jg(e)deﬂz—o (4tfot 16fi+21fy +272 fyr27f4 +216 s +a1 f6) [5.3]
0,

The basic restriction to this formula is that the number of
intervals taken around the bearing must be a multiple of six. However,

this restriction is easily satisfied on the digital computer and presents

no problem for this application.

The above formula can be very closely approximated by (36).%*

&
INCERE RTRIATINY NS (5.0

and can be applied in hand calculations more readily than can the
Newton-Cotes formula. This simplified version is known as Weddle's
Rule, and by inspection it can be seen that this form has four less
multiplications per six intervals than the Newton-Cotes formula. Each
multiplication that can be omitted at no cost in desired accuracy must

be taken advantage of in this type of solution.

5.4 Integration of the Equations of Motion

With the ability to calculate the film force at any instant of

time the only remaining task is integrating the equations of motion of

%Reference in Bibliography, p. 138.
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the journal. The equations of interest are of the form:

d? ..
gr} = L(xy %) [5.5]

l .
da%" = fy Oayx,y) [5.6]

Many methods of integrating first order differential equations
are reported in numerical analysis texts (34), (35), (36). Since any
second order differential equation can be expressed as two first order
equations, there will be four first order equations to integrate forward

in time. These equations are:

B = xx, v, %, 9) (5.7]
&, [5.8]
%% = fy(x, y, X, 9) [5.9]
%% = v [5.10]

where the variables u and v have been introduced to represent the
velocities in the x and y directions, respectively and the expression
for fx, fy are as given in Eqs. [3.45], [3.46].

The methods of solution may be either (a) self-starting and
require only that the initial values of each dependent variable at time

t = to be known, or (b) may require two or more initial values of each
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[Nt

dependent variable at their respective times. It is obvious that the

type (b) methods must be supplcmented by a type (a) method for obtaining

the number of starting values necessary to begin the solution process.
The most basic self-starting method is simply a Taylor Series

Expansion truncated after some arbitrary number of terms, that is:

‘{(tfdt) - {(t)‘FAt S’(t)* ‘Ai’t‘} g'"(t)-i— A én_t'l_r:_ Sn(n +@R
where

Atnfl

&: m ‘;n#‘(ﬁ) , téﬂ £t+at [5,11]

By truncating the series after only two terms,
f(trat) = f(t)+ ot (@ [5.12]

which is known as Euler's Method. Since in dynamics problems the
higher derivatives are not usually easily obtained in closed form,
this method gives easily calculated results which have accuracy O(hz).

For any second order equation that may be expressed as:

d2 :
L= fy, v, 0

dt
two first order equations may be written as:

dv .
I f(y, y, t)

4.
dt V.
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Euler's method can be written as:

- f + hf'
tn + 1 n n
therefore N

Yo+ 1 = Vg + At ¢ f(yn, Yo tn) . e . [5.13]

likewise,

yn + 1 = yn + At(vn)

But the value of v at the (n + 1)th step is known, therefore a

better guess for y might be:

n+ 1

Yat+1 = Yn t8t(vpey) . . . [5.13a]
(See Figure 5.8 for an indication of the capabilities of this method.
The Euler's method solution is so close to the actual solution that
it is hard to distinguish the prediction from the exact solution.)

More elaborate equations can be developed by using finite-
difference methods. Other self-starting equations are second-order
Runge-Kutta, fourth-order Runge-Kutta, and sixth-order Runge-Kutta.

Of course the more elaborate the equations, the more time is required
for each solution and this is what must be kept to a minimum to make
the approach worthwhile.

The type (b) methods of solution usually are applied in pairs
(predictor-corrector). The predictor and corrector equations are
applied in an iterative manner until they agree to within desired limits
at some time t then the same approach is repeated for the next
increment, §“1= tn + At.

This type of solution is obviously going to be very time
consuming if it is allowed to iterate at each increment. In addition,
solutions of this type have shown great numerical instability in

several test cases and must be applied with due caution (See Figure 5.9
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for example of instability of Adams Method with AT = 0.05).

The Milne (39) predictor-corrector pair and the Hammings (40)
method have each proven to be highly unstable for the problem under
discussion. The Adams-Bashforth predictor equation can be expressed

in finite difference notation as (34)*

{ 5 4 3 3 251 4
Xnei -Xn-}-h(mn%'-z—Amn_, +-‘Ti A" Map.q +-§- a mn-3j-_72—0A mr\-4) [5.14]
where
_ df
mn dt
ty
and,
bm -1 mn - mn-l
k k-1 k~1
Amog =0 my - b,

Expanding this equation,
h
Xn+t = Xn +77C’) [I‘)Ol-'mn -2774 Mn-q + 2616 Mn-q -1274 mn.3 + 254 mn_11 [5.]5]

which is the fifth-order equation. Keeping only terms through A3 gives:

h
Xn+t = Xn +ﬂ [55mn—59 Mn-y +37 mn-g-gmn.-;l [5.16]
The Adams-Moulton corrector equation can be expressed as (34)%*:
] 1 A2 LN 19 .4
Xn = Xn-r + N (Mn - 78Mny - 5 8" Mpg -5 &7 My = 7,4 Mn-4) [5.17]

*Reference in Bibliography, p. 226,
**Reference in Bibliography, p. 235.
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Expanding this results in:

h
Xney = Xn +'—E’o[251 Mnyt + 646 Mn -264 Mn- +106 Mp-q =19 mn-3] [5.18]
or, keeping terms through A3 gives:
. h
hri’xn*i'ﬂ[gmnﬂ +19Mp=-5 Mn-, +mn-z-l [5.19]

The above equations are typical of the predictor-corrector
type formulations, some being less complex while others are much more
elaborate and lengthy. The proper choice of the method of solution
is very difficult and has proven to be dependent upon the particular
problem being solved. As an example, while testing several of the
methods of integration on a simple sine wave, the Milne equations gave
excellent results, However, upon applying the same method to the
journal bearing equation, violent oscillations occurred indicating
numerical instability, whereas the simple Euler equations gave very
smooth response predictions, Figure 5.9 gives an indication of the
instability which may be encountered when too large a stepping increment
is used.

The computer program that has been develoﬁed has several options
as to the method of solution desired and will be explained in the

following section.
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5.5 Explanation of Computer Program

A listing of the actual computer program developed from the
theory discussed in the earlier chapters is given as Appendix B. The
program was written in ALGOL programming language and all runs have
been made on the Burroughs B-5500 machine at the Computer-Science Center
of the University of Virginia. The most important feature of the
program is the fact that the results are automatically plotted by the
Calcomp Plotter unit from the magnetic tape output of the computer
program. The plotted data is also written out on the line printer
along with other information that is not plotted.

The major divisions of the program are as follows (See Figure 5.10
for Flow Chart):

1. Card Input of Specifications

2, Integration of Dynamical Equations of Motion

a, Integration of Pressure Profile

3. Line printer listing of results

4. Plotter Routine to Make Tapes for the Calcomp Plotter Unit.

A detailed explanation of the card input is included as a comment
at the beginning of the program (See Appendix B). Card 12 gives the
option as to the method of solution of the equations. Three methods
are available in the program at present and additional changes in the
method of solution can easily be made by any proficient programmer.

The three methods included in the program are:
1. Sixth-order (self-starting) Runge-Kutta (41)
2. Adams - Moulton - Adams - Bashforth (Predictor-Correcto:)

3. Modified Euler's Method

2
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For the purpose of integrating the pressure profile the Weddle's
Rule formula was chosen over the Romberg Method due to the anticipated

future additional feature of having circumferential grooving specified

-over certain angles of the bearing surface. This addition will require

very little change to the program as a result of the "fixed nature" of
the Weddle's Rule formula.
The line printer output of the program gives the following
information (see example following computer program listing, Appendix B):
A. Case number (corresponds to number on plotter output)
B. Bearing input data listed
C. Bearing information calculated in program (Sommerfeld
number, unbalance information, etc.)
D. Additional forcing functions on journal listed as given
on input cards
E. Journal retainer specifications (stiffness and damping
terms)
F. Continuous listing at each time increment of the following
information:
1. Dimensionless time (wt), [RAD.]
2. Displacement in x-direction (x/c), [DIM.]
3. Velocity in x-direction (x/wc), [DIM.]
4. Displacement in y-direction (y/c), [DIM.]
5. Velocity in y-direction (y/cw) , [DIM.]
6. Fluid film force, [1b.]
7. Static transmissibility, [DIM.]

8. Radius of curvature, [DIM.]
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9. Instantaneous whirl ratio, [DIM.]
10. Whirl ratio about bearing center, [DIM.]
11. Phase angle between unbalance and journal center

displacement vector, [DEG.]

The Calcomp Plotter gives four plots for each case submitted

(see Figures 6.47 - 6.50 for examples). These are as follows:

(a) Journal Transient Orbit - (see Figure 6.47)

(b)

A list of important journal specifications appears at the

top of the plot as well as a case number corresponding to

the one on the line printer output. A six inch diameter
circle representative of the clearance circle appears below
the specifications. The journal center path is traced out

as a continuous curve. The small circles on the orbit path
are timing marks that represent one revolution of the journal
in real time with the initial input time as base reference.
In addition, the computer tracks the forces in the fluid

film and places an asterisk at the point of maximum force
(magnitude printed as FMAX in specification list above orbit),

Transmissibility and Journal X-Y Motion

This plot has the transmissibility scaled on the left
vertical axis while the journal X-Y motion is scaled on the
right vertical axls. Each quantity is plotted versus
cycles of motion of the journal. Arrows indicate which
scale is to be used in addition to labeling the dashed

X and Y motion curves.
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A selected group of specifications appears at the top
of each plot for easy reference (see Figure 6.48).

(¢) Radius of Curvature and Whirl Ratio

The same general setup is used for this plot as was
explained for the second plot (see Figure 6.49). The
quantities plotted are the instantaneous radius of
curvature (solid line) and the instantaneous whirl ratio
(dashed line).

(d) Phase Angle VS Cycles of Motion

This plot gives the phase relation between the journal
center displacement vector and the journal unbalance vector
as a functiou of cycles of motion (see Figure 6.50).

The program was developed to allow the user to input bearing
specifications and program control cards with a minimum of effort.
Data card number eight gives the option of having the data printed
on the line printer without having it plotted. If plots are desired,
then data card number nine gives the option as to which plots will be
produced (exception: orbit plot is made regardless of the value

of PLOT1 if "plotter control" = 1.
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CHAPTER VI

PRESENTATION OF RESULTS

6.1 Introduction

The methods of solution incorporated in the computer program
described in the preceding chapter were chosen to give the program the
best overall features. The investigator has been given the choice of:

(a) Rapid solution and reasonable accuracy (Improved Euler's

method).

(b) Reasonable speed of solution and improved accuracy

(Modified Adam's method), but with the problem of numerical
instability greatly increased over (a) above.

(c) Excellent accuracy and less instability than (b) but very

time consuming (sixth-order Runge-Kutta method).

Many runs have been made with the program and an extensive file
of different operating conditions has been compiled. The following
chapter will be given four major divisions to help classify the material
being presented in a systematic manner. The basic journal bearing under
consideration has ghe following specifications:

Journal Weight - 50 1b.

Clearance - 0.005 in.

Diameter - 2.0 in.

Length - 1.0 in.

5

Viscosity of Lubricant - 1 x 10~ lb-sec/in.2

Unbalance - Variable

1



Loading - Variable

Journal Sﬁeed - Variable

Modified specifications are used to help clarify the different
concepts being discussed and also to demonstrate the flexibility of the
developed program.

The stability of a horizontal balanced journal is considered
initially and results in a modification of the stability map discussed
previously in CHAPTER IV. The next section deals with axially vertical
journal bearings. The last two sections will take into consideration
the effect of unbalance and other cyclic external loading functions on

the overall journal bearing performance.

6.2 Instability of Horizontal Balanced Journal Bearings

For the purpose of this discussion, a horizontal bearing is one
having the journal effective weight acting at right angles to the axial
coordinate of the journal. Figure 6.1 shows the orbit of the 50 pound
journal as it is started at the bearing center while operating at a
speed of 4,000 rpm. Five cycles of motion are shown in the figure
and it is obvious that the journal has settled to the equilibrium
eccentricity of 0.306 as computed from the bearing capacity number
and ipdicated as ES on the figure. The maximum force transmitted to
the bearing is indicated by FMAX and is recorded as 58.7 pounds and
occurs 0.29 cycles after the journal was released. By checking the
speed parameter, WS, and the eccentricity on the stability map (Fig. 4.2),
it is apparent that the system is 6perating in a stable region as

predicted by the stability map.
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HORIZONTAL BRLANCED ROTOR
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WS = 1,51

ES = 0.306 -

6.1 Journal Orbit of A Balanced Horizontal Rotor
(N = 4000, W = 50, ¢ = 0.005, L/D = 1/2)
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The transmissibility, TR, is plotted for this case in Figure 6.2
(the solid line). Notice that the TR factor levels off to a value of
1 after about three cycles of motion. The dashed lines on this plot
give the X and Y motion versus cycles of journal motion as indicated.
Figure 6.3 shows the instantaneous whirl and radius of curvature for
this case. The radius reduces to zero as it should while the whirl is
oscillating in a very regular manner. Constant whirl ratios have been
reported to exist in test rigs but it will be apparent from the
following discussion and figures that this is a misnomer for the
horizontal bearing.

The next series of plots (Figures 6.4, 6.5, 6.6) represents the
previous case with the speed increased to 6500 rpm. A different

behavior is immediately noticed and by checking the stability map

(Fig. &.2), it is apparent that the system is operating on the threshold

of instability by the values given for WS and ES. The maximum force has

increased to 64.4 pounds and Figure 6.5 indicates that the force
variations are more pronounced than in the previous force plot (Figure
6.2). From Figure 6.6, the whirl is varying from a value of 0.44 wup
to a value about 0.64. The timing circles on the orbit of Figure 6.4
are indicative of an average whirl of approximately one-halft.

If the journal speced were now increased to 10,500 rpm the speed
parameter, WS, would be 3.96 and well into the region of instability
as precicted by Figure 4.2. Figure 6.7a shows this condition with
the final position in Figure 6.4 as the initial condition for this

plot. The spiral is evidence of the instability of the systeam and if
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HORIZONTAL BALANCED ROTOR

NO. 11981
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6.4 Journal Orbit of A Balanced Horizontal Rotor
(N = 6500, W = 50, ¢ = 0.005, L/D = 1/2)
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HORIZONTAL BALANCED ROTOR
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6.7

a.

Journal Orbit of A Balanced Horizontal Rotor for Cycles
5 - 10 (N = 10,500, W = 50, C = 0.005, L/D = 1/2)
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HORIZONTAL BRLANCED ROTOR

NO. 119®)
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6.7 b. Journal Orbit of A Balanced Horizontal Rotor for Cycles
10 - 15 (N = 10,500, W = 50, C = 0.005, L/D = 1/2)
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more cycles were run the orbit would reach a limit cycle* and continue
the violent whirling motion. Also notice the fact that the maximum
force has increased to 145.6 pounds (as compared to 58.7 pounds for

the stable condition, i.e. Figure 6.1. The orbit of Figure 6.7a is
continued for five additiomal cycles in Figure 6.7b. 1t is apparent
that the rate of growth of the orbit has reduced and a limit cycle would
eventually be formed. The maximum force has increased to a value of
197.9 pounds. Figure 6.7c show the cyclic nature of the resultant
forces on the bearing surface. The whirl ratio is oscillating around
approximately 0.5, as shown in Figure 6.7d.

Figure 6.8 depicts the initial transient orbit for a heavier
journal with an effective weight of 200 pounds and operating at 6500 rpm.
This case is still at the threshold of stability although the equilibrium
eccentricity has increased to 0.497. An increase of journal speed to
10,500 rpm raises the stability speed parameter to 3.96 and the system
exhibits the predicted instability as shown in Figure 6.9. The maximum
force is indicated to be 826.8 pounds, or 4.13 times the weight of the
journal.

The stability map predicts that for systems with an equilibrium
eccentricity above approximately 0.73, there should exist stable
conditions at any speed. With the journal weight increased to 1800
pounds, Figures 6.10 and 6.11 indicate that the system is tending
toward the stable equilibrium position, even when the speed is increased

to 10,500 rpm. The stability map of Figure 4.2 has predicted all the

%#See Figure 6.17 for example of a limit cycle.
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HORIZONTAL BALANCED ROTOR

NO.11118)
N = 6500 RPM WT = 1.00
R= 1.00 IN. W= 200 LB.
L= 1.00 IN. MUaS = 1.000 REYNS
C = 5.00 MILS FMAX =  359.9 LB. AND
TRSMRX = 1.80 OCCURS AT  0.54 CYCLE
S= 0.433 WS = 2,45
SS= 0.108 ES = 0.497

VOO

6.8 Journal Orbit of a Balanced Horizontal Rotor for 5 Cycles
(N = 6500, W = 200, C = 0.005, L/D = 1/2)
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HORIZONTAL BALANCED ROTOR

10500 RPM
1.00 IN.
1.00 IN.
5.00 MILS

MRX = Y4.13
0.700
S= 0.175

o wn 53(:)f-':n =z
noyv

ND.111181

WT = 1.00

W= 200 LB.

MUaS = 1.000 REYNS

FMAX = 826.8 LB. AND
OCCURS AT  9.30 CYCLE

WS = 3.96

ES = 0.395

6.9 Journal Orbit of a Balanced Horizontal Rotor for Cycles

5 - 10 (N = 10,500)
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HORIZONTAL BALANCED ROTOR

NO.111182
N = 6500 RPM WT = 1.00
R = 1.00 IN. W= 1800 LB.
L = 1.0C IN. MUaS = 1.000 REYNS
C = 5.00 MILS FMRX = 8588.7 LB. BND
TRSMAX = 4,77 O0CCURS AT  0.56 CYCLE
S = 0.048 WS = 2.45
SS = 0.012 ES = 0.814

6.10 Journal Orbit of a Balanced Horizontal Rotor for 5 Cycles
(N = 6500, W = 1800, C = 0.005, L/D = 1/2)
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HORIZONTAL BALANCED ROTOR

N = 10500 RPM
R = 1.00 IN.
L = 1.00 IN.
C = S5.00 MILS
TRSMAX = 1.79
S= 0.078
Ss = 0.018

NO.111182
WT = 1.00
W= 1800 LB.
MUaS = 1.000 REYNS
FMAX = 3221.1 LB. AND

OCCURS AT  5.01 CYCLE

WS = 3.96
ES = 0.766

6.11 Journal Orbit of a Balanced Horizontal Rotor for Cycles

5 - 10 (N = 10,500)
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results obtained thus far in this analysis. However, no indication can
be obtained from such a stability map of the behavior of a system that
has external loading. To examine this condition, a constant force of

0 pounds was applied vertically downward (i.e. negative y-direction)

to the 50 podgd journal toASee if the conditions of the 200 pound

journal were repeated. Figure 6.12 gives the interesting results of
j{bat loading. The journal has settled very smoothly into its equilibrium
eccentricity of 0.497. The speed parameter corresponding to Figure 4.2

is still 2.45 and indicates that the system should be at its threshold

*jspeed. An increase of journal speed to 10,500 rpm should produce

violent whirling if Figure 4.2 is valid. It is readily apparent from
Figure 6.13 that the system is stable at 10,500 rpm and has settled
very nicely into the new equilibrium eccentricity of 0.395. 1In
response to these results, Figure 4.2 has been modified to indicate the
stability of a journal bearing with constant external loading. Figure
6.14 presents the stability map that was formulated after the results
of the previous test case were examined. The quantity WT is an
indication of the magnitude of all constant forces acting on the
system. For a horizontal unloaded journal, the value for WT is unity
whereas for the case of the 150 pound loading on the 50 pound journal
the value of WT is four. The old speed paraﬁeter, W for 10,500 rpm
and clearance of 5 mils resulted in a value of 3.96 and a value of
eccentricity of 0.139, which has obviously changed. However, going
into the modified stability map of Figure 6.14 with those values for

w and €0 plus the value of WT = 4, it is apparent that the journal

is stable as verified by the highly damped transient rotor orbit

95



HORIZONTAL BALANCED ROTOR

FOCY =-150LB.

NO. 11982
WT = 4.00
W= S0 LB.
MUsS = 1.000 REYNS
FMRX = 266.4 LB. AND

OCCURS AT  0.24 CYCLE

WS = 1.22
ES = 0.497

6.12 Journal Orbit of a Horizontal Balanced Rotor with Constant
Load for 5 Cycles (N = 6500, W = 50, C = 0.005, L/D = 1/2,

FOCY = -150)
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HORIZONTAL BALANCED ROTOR

NO. 118982
N = 10500 RPM WT = 4,00
A= 1.00 IN. W= SO L8.
L= 1.00 IN. MUaS = 1.000 REYNS
C = 5.00 MILS FMAX =  323.1 LB. AND
TASMAX = 6.46 OCCURS AT  5.01 CYCLE
S= 0.700 WS = 1.98
S = 0.175 ES = 0.395

FOCY =-150 LB

6.13 Journal Orbit of a Horizontal Rotor with Constant Load for
Cycles 5 - 10 (N = 10,500)
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shown in Figure 6.13.

I1f a new speed parameter* is defined as:

@)
I

—
wj/ VWT/m c

]
where,
W = total loading # WT
and,
EO = eccentricity of journal calculated by using WT instead of

W in the projected load, P, of the Sommerfeld equation (Ss)
then the stability map of Figure 6.15 may be obtained. By redefining
the speed parameter and using the actual value of equilibrium
eccentricity, thenand only then can the curve of Figure 4.1 or 4.2
be considered as correct for other than unloaded bearings.

For a vertical journal the equilibrium eccentricity, Eo,
approaches O as can be seen from Figure 3.8, while the speed parameter,
Qs’ approaches =. Therefore, from Figure 6.15, it is apparent that the
vertical journal is unstable regardless of the speed of operation. The
same conclusion was reported by Hori (26) but it cannot be shown from

the stability map as presented by Badgley (Fig. 4.2).

6.3 1Instability of Vertical Balanced Journal Bearings

The stability map of Figure 6.15 in the previous section indicates
that the vertical unloaded journal bearing is unstable for the entire

operating speed range. To verify this condition several cases were

*This is the same parameter used by Reddi and Trumpler (28) in
their linearized approach to the stability problem,
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examined, some of which will be presented here for discussion.

The same 50 pound journal is considered in Figure 6.16. The
initial conditions were all zero and as the plot indicates, no orbit
was obtained for the five cycles the program was allowed to run. The
forces on the bearing are zero, as they should be, By inspection of
the equations of motion it is readily apparent that the origin is an
equilibrium point for the unloaded vertical journal bearing. To
investigate the stability of this point, the system is given a small
displacement from the origin and released. If the system is in stable
equilibrium then the journal would return to the origin, otherwise the
configuration is an unstable equilibrium point (saddle point) and the
solution will continue to grow as time increases until it eventually
forms a limit cycle due to the bearing nonlinearity.

Figure 6.17 represents twenty-five cycles of motion of the
journal with the initial conditions all zero except for a displacement
of 0.01 (dimensionless, i.e. x = 0.01 x ¢) in the positive x-coordinate
direction. The initial exponential growth is readily apparent. The
figure is an excellent example of a limit cycle, which arises from the
nonlinear nature of the fluid-film force expression derived in
CHAPTER III. The whirl for this particular case 1s constant and
has a value vevry mear one-half, as indicated by Figure 6.18. The
vertical rotor is the only configuration that has produced a constant
value for the whirl ratio. It was shown in the previous section that
a horizontal rotor does not have a constant whirl ratio, but one which
varies in a cyclic manner due to gravitational loading. Because the

system being considered has gone into the half-frequency whirl, the
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VERTICAL BARLANCED ROTOR

NO. 41591
N = 4000 RPM WT = 0.00
R= 1.00 IN. W= S0 L8.
L= 1.00 IN. MUaS = 1.000 REYNS
C = 5.00 MILS FMRX = 0.0 LB. AND
TRSMRX = 0.00 OCCURS AT  0.00 CYCLE
S= 1.067 WS = 1,51
SS = 0.267 ES = 0.306

6.16 Journal Orbit of a Balanced Vertical Rotor with Zero
Initial Conditions (N = 4000, W = 50, C = 0.005, L/D = 1/2
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VERTICAL BALANCED ROTOR

4000 RPM
1.00 IN.
1.00 IN.
5.00 MILS
MAX = 0.38
1.067
SS = 0.267
X(T=0)=0-01

R

npme e n

N
A
L
C
T
S

NO. %1581

WT = 0.00

W= 50LB.

MUsS = 1.000 REYNS

FMAX =  18.9 LB. AND
OCCURS AT 25.00 CYCLE

WS = 1.51

ES = 0.306

6.17 Journal Orbit of a Balanced Vertical Rotor with Swall
Initial Displacement for 25 Cycles (N = 4000)
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VERTICAL BALANCED ROTOR

N = 6500 APM
A= 1.00 IN.
L= 1.00 IN.
C = 5.00 MILS
TRSMAX = 1.839
S= 0.048
S = 0.012
X(T=0)=0.1

NO.L11183
WT = 0.00
W= 1800 LB.
MUaS = 1.000 REYNS
FMAX = 2493.0 LB. AND

OCCURS AT  4.96 CYCLE

WS = 2.45
ES = 0.814

6.19 Journal Orbit of a Balanced Vertical Rotor with Small
Initial Velocity for 5 Cycles (N = 6500, W = 1800, C = 0.005,
L/D = 1/2)
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VERTICAL BALANCED ROTOR

NO.111183
N = 10500 RPM WT = 0.00
A= 1.00 IN. W = —180071L8.
L= 1.00 IN. MUaS = 1.000 REYNS
C = 5.00 MILS FMAX = 9588.1 LB. AND
TRSMAX = 5.33 OCCURS AT 5.01 CYCLE
S= 0.078 WS = 3.96
SS = 0.018 ES = 0.766

6.20 Journal Orbit of a Balanced Vertical Rotor for Cycles 5 -10
(N = 10,500, W = 1800, ¢ = 0.005, L/D = 1/2)
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VERTICAL BALANCED ROTOR

NO. 41592
N = 4000 RPM WT = 1.00
R= 1.00 IN. W= S0 LB.
L= 1.00 IN. MUaS = 1.000 REYNS
C = 5.00 MILS FMRX = 58.9 LB. AND
TASMRX = 1.18 OCCURS AT  0.28 CYCLE
S= 1.067 WS = 1.5]
SS = 0.267 ES = 0.306
FOCY=-50LB.

6.21 Journal Orbit of a Balanced Vertical Rotor with Constant
Load (N = 4000, W = 50, C = 0.005, L/D = 1/2, FOCY = -50)
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bearing surfaces are being loaded as a result of the journal whirling.
The value of TR had leveled off at a constant value of 0.38 as indicated
by the plot of that quantity (not included in this report).

The next two plots (Figures 6.19 and 6.20) are for the 1800
pound journal that was found to be stable in the horizontal position.

As indicated by these present plots for the vertical journal, the
violent half-frequency whirl has developed a static transmissibility,
TRS, equal to 5.33, (i.e. FMAX = 9598.1 pounds). The whirling was
initiated by an initial velocity as indicated by Figure 6.19.

The stability plot given by Figure 6.14 indicates that the vcr-
tical journal can be stabilized by adding an external force. With
the addition of a 50 pound force directed along the negative y-direction
(perpendicular to axial coordinate), Figure 6.21 indicates that the
system is very stable and furthermore, the resulting transient orbit
is identical to an unloaded 50 pound horizontal rotor operating at the
same speed (See Figure 6.1 for comparison).

The sample cases presented in this section have supported the
stability maps as presented in Figures 6.14 and 6.15. This concludes
the discussion of balanced journals and any future reference to stability
will refer to the plot of Figure 6.14 or 6.15 as being the appropriate

stability boundaries.

6.4 Effect of Unbalance on Journal Bearing Performance

6.4.1 The Vertical Journal Bearing

The discussion thus far has been restricted to balanced journals.

This section is devoted entirely to the effect of unbalance as indicated
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by the section heading. In view of the fact that all journals or rotor
systems have some residual unbalance, the effect of unbalance on
bearing performance is of great importance to the manufacturers of such
units. This is especially true when the company must guarantee the
reliability of the units to the buyers and give compensation for lost
proddctioﬁ due to "downtime" when the unit does not function as
specified in the guarantee.

The following journal orbits should help clarify the effect
that unbalance has on a vertical system. Figure 6.22 shows the initial
transient motion of the 50 pound vertical journal with an effective
unbalance of 0.20 (i.e. EMU = eLl = 0.2 x ¢) or an unbalance load of
5.68 pounds at the given shaft speed of 2000 rpm. Notice there is a
small half frequency whirl component present which appears to
diminish in time. The speed parameter for the vertical rotors is
calculated as W and not as QS. The value of the unbalance Sommerfeld
number, SU’ gives an eccentricity of 0.085 and indicates that the
steady-state orbit radius, based on the rotating load value of Fu= 5.68
pounds, should be 0.085. Figure 6.23 gives the journal motion for five
more shaft revolutions. The inner loop continues to increase in size
as the outer loop reduces indicating that the nonsynchronous component
is damping out. Notice that the orbit is approaching the calculated
steady-state orbit radius.

An increase of journal speed to 4000 rpm results in the larger
transient motion of Figure 6.24, The same behavior of the inner
and outer loops converging is also observed in this figure. Figure

6.25 confirms that the instantaneous radius of curvature is converging
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VERTICAL UNBALANCED ROTOR

NO. 41593
N = 2000 RPM WT = 0.00
R= 1.00 IN. W= SO LB.
L= 1.00 IN. MUeS = 1.000 REYNS
C = 5.00 MILS FMRX = 6.1 LB. AND
TASMAX = 0.12 OCCURS AT  0.53 CYCLE
S= 0.533 WS = 0.75
SS = 0.133 €S = 0.453
EMU = 0.20 FU = 5.68 LB.
SU = 4.698 FURATIO = 0.11
TROMAX = 1.08 ESU = 0.085

6.22 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles
(N = 2000, W = 50, C = 0.005, L/D = 1/2, EMU = 0.2)
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VERTICAL UNBALANCED ROTOR

N = 2000 RPM

R = 1.00 IN.,
L= 1.00 IN.

C = 5.00 MILS
TASMAX = 0.11
S= 0.533

S = 0.133
EMU = 0.20
SU= 4,698
TROMAX = 1.01

NO. %1583
WT = 0.00
W= S0 Ls.
MUeS = 1.000 REYNS
FMAX = S.7 LB. AND

OCCURS AT  6.59 CYCLE

WS = 0.75
ES = 0.453
FU = 5.68 LB.
FURATIO = 0.11
ESU = 0.085

6.23 Journal Orbit of an Unbalanced Vertical Rotor for Cycles
5 - 10 (N =2000, W = 50, C = 0.005, L/D = 1/2, EMU = 0.2)
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VERTICAL UNBALANCED ROTOR

4000 RPM
1.00 IN.
1.00 IN.
5.00 MILS
MAX = 0.50

po
nwpyn uw ut

1.067

. 267

.20

. 349
1.10

m
=
c
n

It NOO

NO. 41593
WT = 0.00
W= SO LB.
MUaS5 = 1.000 RETNS
FMAX = 25.1 LB. AND

OCCURS RT  0.56 CYCLE

WS = 1.51
ES = 0.306
FU = 22.70 LB.
FURARTIO = 0O.45
ESU = 0.163

6.24 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles
(N = 4000, W = 50, C = 0.005, L/D = 1/2, EMU = 0.2)
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toward the calculated value of ESU = 0.163 as given in Figure 6.24,
The whirl is oscillating about the value of one, with the oscillation
becoming smaller as the motion continues. Figure 6.26a shows five more
cycles of motion, the initial conditions corresponding to the final
values of Figure 6.24. The value of TRDMAX is 0.94 which indicates
that the bearing force is less than the unbalance loading, a very
desirable mode of operation.

Gunter (7)* explained that an orbit such as Figure 6.24 is
composed of a synchronous and a nonsynchronous component and as the
inner loop approaches the outer one the nonsynchronous component is
reducing and approaches zero as the orbits coincide. In the same
discussion, Gunter notes that the expression "half-frequency whirl"
has been given to this type orbit since two vectors, one rotating at g,
the other at %,w and placed head to tail will trace out the pattern as
indicated in the orbit of Figure 6.22 or 6.24. This effect is shown
for different magnitudes of the two vectors in Figure 6.26b.

It might seem reasonable to assume that the amount of unbalance
in the journal could be made very small and produce a very small
synchronous limit cycle. Figure 6.27 indicates that this assumption
is falsé. The resulting journal center orbit is growing and should
reach the same limit cycle as the perfectly balanced journal (See
Fig. 6.17). Figure 6.28 shows the increased rate of growth with the
same unbalance of 0.01 but at the higher speed of 10,500 rpm. The

high value of TRDMAX = 19 in this orbit and the previous value of 10

*Reference in Bibliography, pp. 133-140.
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VERTICAL UNBARLANCED ROTOR

0. 41593
N = 4000 APM WT = 0.00
R = 1.00 IN. W= S0 LB.
L= 1.00 IN. MUeS = 1.000 REYNS
C = S.00 MILS FMAX = 21.4 LB. AND
TRSMAX = 0.43 OCCURS AT  6.74 CYCLE
S= 1.067 WS = 1.81
S = 0.267 ES = 0.306
EMU = 0.20 FU= 22.70 LB.
U= 2.349 FURATIO = 0.4S
TROMARX = J.94 ESU = 0.163

6.26 a. Journal Orbit of an Unbalanced Vertical Rotor for
Cycles 5 - 10 (N = 4000, EMU = 0.2) '
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6.26 b. Analog Computer Traces of Various
Combinations of Synchronous and Half-Frequency Whirl



VERTICRAL UNBALANCED ROTOR

NO. 5291
N = 4000 RPM WT = 0.00
R= 1.00 IN. W= SO LB.
L= 1.00 IN. MUeS = 1.000 REYNS
C = 5.00 MILS FMRX = 11.8 LB. AND
TRSMAX = 0.24% OCCURS AT 10.00 CYCLE
S= 1.067 WS = 1.51
SS = 0.267 ES = 0.306
EMU = 0.01 FU = 1.14 LB.
SU = 146.981 FURATIO = 0.02
TROMAX = 10.38 ESU = 0.009

6.27 Journal Orbit of a Slightly Unbalanced Vertical Rotor
for 10 Cycles (N = 4000, EMU = 0.01)
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VERTICAL UNBRLANCED ROTOR

N = 10S00 RPM
R= 1.00 IN.
L= 1.00 IN.
C = S.00 MILS
TRSMAX = 2,98
S= 2,800

SS = 0.700
.EMU = 0.01

SU = 17.897

TROMAX = 19,02

f

! LI AL { T I I

N0, S29)1

WT = 0.00

W= S0 LB.

MUeS = 1.000 REYNS

FMRX =  148.8 LB. AND
OCCURS AT  9.40 CYCLE

WS = 3,96

ES = 0,138

FU = 7.82 LB.

FURRTIO = 0.16

ESU = 0,023

6.28 Journal Orbit of a Slightly Unbalanced Vertical Rotor for
10 Cycles (N = 10,500, EMU = 0.01)



indicate that this is a very undesirable mode of operation.
The stability speed parameter of Figure 6.15 for a horizontal

rotor under constant loading is given by the following relation:
Q =w, VvV W [6.1]

This parameter may be used to approximate the stability charac-
teristics of the vertical rotor with unbalance by assuming that the

constant load WT may be replaced by the rotating load component:

W, = me @ [6.2}

T (SN

Therefore, an approximate stability parameter for the unbalance vertical

rotor is:

— [
Q / = A (EMU) < 2.5 [6.3]

g =N© eLl A

for stability.

The above appears to be a necessary but not sufficient condition
for complete stability. For example in Figure 6.24 EMU = 0.2 and the
speed parameter from Eq. 6.3 is 2.236 which lies in the stable region
of Figure 6.15, 1In Figure 6.27 EMU = 0.01 for which the speed
parameter is 10.0 and well into the unstable region of the stability
map. For EMU = 0.1 the speed parameter is 3.16 which is just
above the threshold. 1In Figure 6.29 where EMU = 0.1, 10 cycles of
the initial transient motion are shown which confirms the predicted
instability. The threshold speed has a value of 2.5, therefore the

critical unbalance value is given as:

1

MU, = — = 0.16
R (.5) [6.4]
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Figure 6.50 shows the initial transient orbit of the 50 pound
journal with EMU equal to 0.14, just past the threshold or just below
the critical value of unbalance. Figure 6.31 verifies that the system
is in the unstable region since the orbit is increasing in size and
the value of TRDMAX has increased to 1.13.

Figures 6.32 and 6.33 are for the critical value of unbalance,
EMU = 0.16. The orbit is decrecasing in size and the value of TRDMAX
has reduced from 1.09 in Figure 6.32 to 1.03 in Figure 6.33.

The behavior of the journal according to the level of unbalance
can be predicted from the stability map (Figure 6,15), but it is
obvious that as the speed increases, the size of the resulting limit
cycle will increase. Figures 6.34 - 6.39 demonstrate the effect of
increasing the speed for a given unbalance level of 0.2. Figure 6.34
gives the initial transient at the speed of 6500 rpm. The size of the
initial orbit has increased and the predicted steady-state orbit would
have a radius (dim.) of 0.244., The inner loops are precessing counter-
clockwise as have all the orbits having EMU > 0.16. Gunter (7)*
indicates that this is caused by the nonsynchronous component of motion
having a frequency of less than one-half running speed. Figure 6.35
is a continuation of the orbit of Figure 6.34 and has the TRDMAX
reduced to 0.91.

For a journal speed of 10,500 rpm as shown in Figure 6.36, the
resulting transient orbit is similar to the case of Figure 6.29 for

which the orbit was unstable, The orbit is getting larger and the

*Reference in Bibliography, p. 134.
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VERTICAL UNBARLANCED ROTOR

N = Y4000 APM
A= 1.00 IN.
L= 1.00 IN.

C = 5.00 MILS
TASMAX = 0.29
S= 1.067

SS = 0.267
EMU = 0.10
SU= 4,698
TROMAX = 1.29

NO. %1583

WT = 0.00

W= S0 LB.

MUsS = 1.000 REYNS

FMAX = 18.7 LB. AND
OCCURS AT 10.08 CYCLE

HS = 1.51

ES = 0.306

FU= 11.35 LB.

0.23

0.085

FURATIO =
ESU =

6.29 Journal Orbit of an Unbalanced Vertical Rotor for 10 Cycles

(N = 4000, EMU = 0.10)
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VERTICAL UNBALANCED ROTOR

4000 RPM

NO. 11583

WT =
W=
MUuS =
FMAX =
OCCURS AT
WS = 1.51
ES = 0.306
FU = 15.89 LB.
FURRTIO = 0.32
ESU =

0.00
SO LB.
1.000 REYNS
17.5 LB. AND
4.53 CYCLE

Q.117

6.30 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles

(N = 4000, EMU = 0.14)
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VERTICAL UNBALANCED ROTOR

ND. %1568
N = 4000 RPM NT = 0.00
R= 1.00 IN. W= 50 LB.
L= 1.00 IN. MUeS = 1.000 REYNS
C = 5.00 MLS FMAX =  17.9 LB. AND
TRSMAX = 0.36 OCCURS AT  8.50 CYCLE
S= 1.067 WS = 1.51
SS =  0.267 ES = 0.306
EMU = 0.14 FU = 15.89 LB.
SU= 3.356 FURATIO =  0.32

6.31 Journal Orbit of an Unbalanced Vertical Rotor for Cycles
5 - 10 (N = 4000, EMU = 0.14)
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VERTICAL UNBALANCED ROTOR

N0, 41588
N = 4000 APM WT = 0.00

R= 1.00 IN. W= S0 LB.

L= 1.00 IN. MUsS = 1.000 REYNS
C = 5.00 MILS FMAX = 19.7 LB. AND
TRSMAX = 0.38 OCCURS AT  0.56 CYCLE
S= 1.067 WS = 1.51

SS = 0.267 ES = 0.306

EMU = 0.16 FU= 18.16 LB.

SU= 2.836 FURATIO = 0.36
TROMAX = 1.09 ESU = 0.133

6.32 Journal Orbit of an Unbalanced Vertical Rotor with the
Critical Value of Unbalance (N = 4000, EMU = 0.16)
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VERTICAL UNBALANCED ROTOR

NO. 41583
N = 4000 RPM KT = 0.00
A= 1.00 IN. W= SO LB.
L= 1.00 IN. MUsS = 1.000 REYNS
C= 5.08 MILS FMAX = 18.6 LB. AND
TRSMAX = 0.37 OCCURS AT  6.60 CYCLE
S= 1.087 WS = 1.51
SS = 0.267 ES = 0.306
EMU = 0.16 FU= 18.16 LB.
SU= 2.836 FURATIO = 0.36
TROMAX = 1.02 ESU = 0.133

6.33 Journal Orbit of an Unbalanced Vertical Rotor for Cycles
5 - 10 (N = 4000, EMU = 0.16) Illustrating Stable Half-
Frequency Whirl
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VERTICAL UNBARLANCED ROTOR

N = 6500 RPM
R= 1.00 IN.
L= 1.00 IN,

C = 5.00 MILS
TRASMRX = 1.3l
S= 1.733

SS = 0.433
EMU = 0.20
SU= 1.44 -
TROMRX = 1.10

ND. 11583

WT = 0.00

H= S0 LB.

MUeS = 1.000 REYNS

FMAX = 65.7 LB. BAND
OCCURS RT  0.58 CYCLE

WS = 2.45

ES = 0.211

FU = 58.95 L8.

FURRTIO = 1.20

ESU = 0.244

6.34 Journal Orbit of an Unbalanced Vertical Rotor for 5 Cycles
(N = 6500, EMU = 0.2) with Damped Half-Frequency Whirl
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VERTICAL UNBRLANCED ROTOR -

6500 RPH
1.00 IN,
1.00 IN.
S.00 MILS
MRX = 1.09
1.733
0.433
0.20
1.446

WAz
" 3¥|| a nn

SS =
EMU =
SU =

TROMAX =

0.31

NO. ®)S83
KT = 0.00
K= SO LB,
MUeS = 1.000 BREYNS
FMAX = S54.6 LB, AND

0CCURS RT  6.76 CYCLE

WS = 2.45
€S = 0.211
FU = 53,95 LE.
FURRTIO = 1,20
ESU = 0,244

6.35 Journal Orbit of an Unbalanced Vertical Rotor for Cycles
5- 10 (N = 6500, EMU = 0.2) Showing Motion Approaching

Syncnronous Precession
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VERTICAL UNBALANCED ROTOR

NO. %1553
N = 10500 RPM Wl = 0.00
R= 1.00 IN. W= SO LB.
L= 1.00 IN. MUeS = 1.000 REYNS
C = 5.00 MILS FMAX = 188.1 LB. RND
TRSMAX = 3.76 OCCURS AT  4.53 CYCLE
S= 2.800 WS = 3.96
SS = 0.700 ES = 0.139
EMU = 0.20 FU = 156.45718.
SU= 0.895 FURATIO = 3.13
TRDMAX = 1.20 ESU = 0.342

6.36 Journal Orbit of an Unbalanced Vertical Rotor Above the
Stability Threshold for 5 Cycles (N = 10,500, EMU = 0.2)
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VERTICAL UNBALANCED ROTOR

NO. 11583
N = 10500 RPM WT = 0.00
R = 1.00 IN. W= S0 LB.
L = 1.00 IN. MUaS = 1.000 REYNS
C = 5.00 HILS FMAX = 201.0 LB. AND
TRSMAX = 4.02 OCCURS AT 8.49 CYCLE
S= 2.800 WS = 3.96
SS = 0.700 ES = 0.139
EMJ = 0.20 FU = 156.4S LB8.
SU= 0.89 FURATIO = 3.13
TROMAX = 1.28 ESU = 0.342

6.37 Journal Orbit of an Unbalanced Vertical Rotor for Cycles
5- 10 (N = 10,500, EMU = 0.2)
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VERTICAL UNBARLANCED ROTOR

N = 21000 APM
R= 1.00 IN.
L= 1.00 IN.
C= 5.00 MILS
TRSMAX = 21.34
S= 5.600

S5 =  1.400
EMU = 0.20

SU = 0,447
TROMRX =  1.71

WT = 0.00

W= S0 LB.

MUeS = 1.000 REYNS

FMAX = 1067.0 LB. AND
OCCURS AT  8.22 CYCLE

WS = 7,81

ES = 0.072

FU = 625.79 LB.

FURATIO = 12,52

ESU = (0.481

6.38 Journal Orbit of an Unbalanced Vertical Rotor for 10 Cycles
and Showing the Limit Cycle (N = 21,000, EMU = 0.2)



UNBRLANCED ROTOR

N = 18000 RPM NO. 82782
R= 1.00 IN. W= 200 LB.
L= 1.00 IN. MUsS = 1.000 REYNS
C = 3.76 MILS FMAX = 15475.2 LB. AND
TASMAX = 77.38 OCCURS RT  0.22 CYCLE
S= 2.122 WS = 5.88
S§ = 0.531 €S = 0.178
EMU = 1.00 FU = 6914.85 LB.
sU= 0.061 FURATIO = 34.57
TROMAX =  2.24 ESU = 0.791

EULER'S METHOD W-60 H =20.10
VERTICAL ROTOR

6.39 Journal Orbit of a Highly Unbalanced Vertical Rotor
Experiencing Synchronous Whirl Above the Stability Threshold
for 5 Cycles (N = 18,000, W = 200, C = 0.00376, L/D = 1/2,
EMU = 1.0)
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inner loop is precessing clockwise and becoming smaller, indicating a
predominant nonsynchronous component of motion. The orbit is continued
in Figure 6.37 where the TRDMAX has increased from 1,20 to 71.28.

With the journal speed increased to 21,000 rpm, the transient
orbit of Figure 6.38 shows the limit cycle is well above the predicted
unbalance radius of 0.491 and ig predominated by the nonsynchronous
component of motion. From these figures there is a strong indication
that if the value of journal speed is above 2.5 x J;;:? (i.e. W > 2.5),
the vertical rotor with EMU > 0.16 will be unstable. In addition, the
stability map indicates that if the predicted bearing eccentricity (ESU)
due to unbalance is larger than 0.73, then the system should have
synchronous motion only. Figure 6.39 represents five cycles of a 200
pound rotor with large unbalance (EMU = 1.0), a speed of 18,000 rpm,
and a speed parameter of w, = 5.88. The predicted unbalance eccentricity
ESU was 0.791 and the motion is completely synchronous as indicated by
the timing marks. The orbit has a radius of 0.81 which is slightly
above the predicted value. This mode of operation is obviously
undesirable even though the nonsynchronous component of motion is not
present, as predicted. The TRDMAX is 2.24 which indicates that the
bearing is subjected to a load of over 7 tons.

The results of the discussion on the unbalanced vertical rotor
give strong indications that a stability criteria can be developed for
this system. The results of this section have shown that the level of
unbalance and the speed of the journal are both factors that must be

considered when trying to determine the stability of the vertical

journal.
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The results of this limited study on the stability of the

vertical rotor shows that:

1. The balanced unloaded rotor is always unstable,

2. Unidirectional loads can stabilize the bearing according
to Figure 6.15.

3. For light values of unbalance EMU < 0.16 the system will
exhibit nonsynchronous motion for all speeds.

4. The necessary and sufficient conditions for complete
stability (synchronous precessive motion only) is that the
unbalance EMU must be greater than 0.16 and the speed
parameter W must be less than 2.5.

5. For large values of rotor unbalance where ESU > 0.73,
then the resulting orbit will be synchronous even for values
of the speed parameter W above 2.5, Stabilizing the rotor
by the addition of large unbalance values is highly

undesirable due to the large bearing forces transmitted.

6.4.2 The Horizontal Journal

Figure 6.40 represents the behavior of a horizontal 50 pound
journal operating at 6500 rpm. Due to the gravity loading, the orbit
is displaced by the steady-state eccentricity ES = 0.21 (see Figure
6.34 for the vertical case). The nonsynchronous component is less than
one-half due to the inner loop precessing in a counterclockwise
direction. The unbalance load is 59.95 pounds as indicated by FU. The
TR factor (Figure 6.41) is osserved to be oscillating between a value

of almost zero and up to a maximum of about 2.3. This is approximately
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HORIZONTAL UNBRLANCED ROTOR

N = 6500 RPM
R= 1.00 IN.
L= 1.00 IN,
C = 5.00 MILS
TRSMRX = 2.66
S= 1.733

SS = 0.433
EMU = 0.20
SU= 1.446
TROMRX =

m- 2179}‘A

WT = 1.00

W= S0 LB.

MUeS = 1.000 REYNS

FMAX = 133.0 LB. RND
OCCURS AT  0.86 CYCLE

WS = 2,45

ES = 0.211

FU= 58.95 LB,

FURRTIO = 1,20

ESU = 0.244

~ 6.40 Journal Orbit ot an Unbalanced Horizontal Rotor at the

Stability Threshold for 5 Cycles (N = 6500, W = 50,

C = 0.005, L/D

1/2, EMU = 0.2)
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HORIZONTAL UNBRLANCED ROTOR

NO. 21791-E

N = 6500 RPM WT = 1.00
R= 1.00 IN. W= SO LB.
L= 1.00 IN. MUeS = 1.000 REYNS
C = S.00 MILS FMRX = 135.2 LB. RND
TRSMRX = 2.70 OCCURS AT  0.86 CYCLE
S= 1.733 WS = 2.45
SS = 0.433 €S = 0.211
EMU = 0.20 FU = 58.85 L8.
SU= 1.446 FURRTIO = 1.20
TROMAX =  2.26 CESU = 0.244

——

=

~0.8

~0.6

—0.%

6.42 Journal Orbit (by Euler's Improved Method) of an Unbalanced
Horizontal Rotor for 5 Cycles (N = 6500, W = 50, C = 0.005,
L/D = 1/2, EMU = 0.2)
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HORIZONTAL UNBALANCED ROTOR

N = 10500 RPM
R= 1.00 IN.
L= 1.00 IN.

C = 5.00 MILS
TRSMAX = 4,97
S= 2.800

SS= 0.700
EMU = 0.20

SU= 0.895
1.58

TRDMRX =

NO. 21791

WT = 1.00

W= S0 LB.

MUaS = 1.000 REYNS

FMAX =  248,7 LB. RND
OCCURS RT 8.95 CYCLE

WS = 3.96

ES = 0.139

FU = 156.45 LB.

FURRTIO = 3.13

ESU = 0.342

6.45 Journal Orbit of an Unbalanced Horizontal Rotor above the
Stability Threshold for Cycles 5 - 10 (N = 10,500)
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HORIZONTRL UNBALANCED ROTOR

N = 10500 RPM
R= 1.00 IN.
L= 1.00 IN.
C = 5.00 MILS
TRSMRX = S.11
S= 2.800
SS =
SU

N. 2179}

WT = 1.00

W= S0 LB.

MUsS = 1.000 RETNS

FMAX =  255.% LB. AND
OCCURS AT 10.97 CYCLE

KS = 3.96

€S = 0.139

FU = 156.4S5 LB.

FURRTIO = 3.13

ESU =

0.342

6.46 Journal Orbit of an Unbalanced Horizontal Rotor for Cycles
10 - 15 Showing the Non-Synchronous Limit Cycle (N = 10,500)
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HORIZONTAL UNBALANCED ROTOR

N = 6500 RPM

R = 1.00 IN.
L= 1.00 IN.

C = 5.00 MILS
TASMRX = 8.27
S= 1.733
SS= 0.433
EMU = 0.80
SU= 0.361
TRDMRX = 1.72

NO. 21792
WT = 1.00
W= SO Ls.
MUeS = 1.000 REYNS
FMRX = 413.5L8. AND

OCCURS AT  1.78 CYCLE

WS = 2.45
€S = 0.211
FU = 239.82 L8.
FURRTIO = 4.80
ESu = 0.533

— ]

6.47 Journal Orbit of an Unbalanced Horizontal Rotor Showing
Synchronous Motion at the Stability Threshold for 5 Cycles
(N = 6500, W =50, C = 0.005, L/D = 1/2, EMU = 0.8)
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HORIZONTRL UNBALANCED ROTOR
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HORIZONTAL UNBALANCED ROTOR
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HORIZONTAL UNBRLANCED ROTOR

000

NO. 21792 W= SO L8 N = 6S00 fPN C= S5.00 niLs = 0.5
U~ 0800 fO= 0018 EN= 0.00 S= 1.733 MUaS = 1.0000 REINS
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6.50 Unbalance-Displacement Phase Angle vs Cycles of Motion
(N = 6500)
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HORIZONTAL UNBRLANCED ROTOR

NO. 21782-E
N = 10500 RPM KT = 1.00
R= 1.00 IN. H= S0 LS.
L= 1.00 IN. MUeS = 1.000 REYNS
C = 5.00 MILS FMAX = 1044.5 LB. RND
TRSMRX = 20.88 OCCURS RT 5.77 CYCLE
S= 2.800 WS = 3.96
SS = 0.700 €S = 0.138
EMU = 0.80 FU = 625.79 L8.
SU= 0.224 FURRTIO = 12.S2
TROMRX = 1.67 ESU = 0.620

6.51 Journal Orbit of an Unbalanced Horizontal Rotor above the
Stability Threshold for Cycles 5 - 10 Showing Synchronous
Limit Cycle (N = 10,500)
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HORIZONTAL UNBRLANCED ROTOR
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6.53 Radius of Curvature and Whirl vs Cycles of Motion for Cycles
5 - 10 Illustrating Small Numerical Instability (N = 10,500)



An increcase of EMU to a value of 0.8 produces the "synchronous"
limit cycle of Figure 6.47. Figures 6.48, 6.49, and 6.50 arc the
transmissibility, whirl and radius, and phase angle plots for this case.

Note the cyclic nature of the forces on the bearing as indicated
by the TR plot and the fact that the whirl is oscillating about the
value of 1.0 while the timing marks on the orbit plot are coming on
top of each other and make it appear that the orbit is absolute
synchronous while it is not.

With an increase of speed to 10,500 rpm, the limit cycle grows
accordingly as shown in Figure 6.51 and the synchronous forcing function
prodominates the resultant orbit motion. The plot of TR in Figure 6.52
resulted from the improved Euler solution and is the correct result for
the case presented in CHAPTER V as Figure 5.9. The radius and whirl
plot for this case is included as Figure 6.53 and concludes the series
of figures being presented which are related to unbalance loading
along.

The cases presented have shown that unbaiance in a horizontal
rotor will increase the forces being transmitted to the bearings and
therefore should be reduced to the smallest value possible. No
advantage, as was found for the vertical journal, can be had from

unbalance in a horizontal rotor.

6.5 Motion of a Journal Bearing Experiencing Cyclic External iocading

A journal bearing in actual use must support the journal and
rotor system and in addition it must be able to maintain its stability

and load-carrying capacity under any type of external loading that
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might occur. TFor example, the main bearings of an internal combustion
engine experience severe cyclic loading functions through the connecting
rods. Journal bearings must be able to support shock loading, plane
cyclic loading, rotating loads other than unbalance, or any other type
loading that a particular application might involve.

The following sample cases were chosen to illustrate the ability
of the method of solution to produce the resulting journal orbits.

Figure 6.54 indicates the orbit of a 200 pound vertical journal
with a clearance of 3.76 mils operating at 3600 rpm and experiencing
a -200 pound load that is rotating backwards at 1/2 the journal angular
frequency. The resulting "three-bladed propeller' is the resultant
motion of a forward synchronous component plus a nonsynchronous
component rotating backward at one-half the angular velocity of the
synchronous component.

By applying the formula given by Hull (25)* there should have
been approximately two outer loops. The difference is, of course, that
the unbalance forcing function has altered the effect of the external
rotating load and results in the three outer loops of Figure 6.54. This
type of motion has actually been observed experimentally with two-pole
electric motors supported in plane journal bearings(*z)-

The same conditions for a horizontal bearing is shown in Figure
6.55 with the corresponding whirl and curvature plot presented in

Figure 6.56.

#See CHAPTER II, p. 10 for equation given by Hull.
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UNBALANCED ROTOR

NO. 82783
N = 3600 RPM

R = 1.00 IN. W= 200 LB.
L= 1.00 IN. MUaS = 1.000 REYNS
C = 3.76 MILS FMAX =  425.9 LB. AND
TASMAX = 2,13 OCCURS AT  1.72 CYCLE
S= 0.424 KS = 1.18
SS = C106 ES = 0.500
EMU = 0.27 FU = 73.57 LB.
SU= 1.154 FURRTIO = 0.37
TRDOMRX = 5.79 ESU = 0.289

FO = -200.0 LB. EN = -0.50

= 0,10

EULER'S METHOD W-60
VERTICAL ROTOR

6.54 Journal Orbit of an Unbalanced Vertical Rotor Having a
Backward Half-Frequency Rotating Load for 5 Cycles (N = 3600,
W =200, C =0.00376, L/D = 1/2, FO = -200, EN = -0.5,
EMU = 0.27)
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UNBALANCED ROTOR

NO. 82381
N = 3600 RPM

R= 1.00 IN. , W= 200 LB.
L= 1.00 IN. MUeS = 1,000 REYNS
C = 3.76 MILS FMRX = 567.2 LB. AND
TRSMRX = 2.84 OCCURS AT  1.63 CYCLE
S= 0.424 WS = 1.18
SS = 0.106 ES = 0.500
EMU = 0.27 FU = 73,57 LB.
SU= 1.154 FURRTIO = 0.37
TRDMRX = 7.71 ESU = 0.2898

FO = -200.0 LB. EN = -0.50

R-K' 4 W=60 H = 0,05

5 pt. rule

6.55 Journal Orbit of an Unbalanced Horizontal Rotor Having a
Backward Half-Frequency Rotating Load for 5 Cycles
(N = 3600, W = 200, C = 0.00376, L/D = 1/2, FO = -200,
EN = -0.5, EMU = 0.27)
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The next three series of figures are for a 50 pound journal with
a clearance of 5 mils experiencing cyclic loading functions. Each
case is allowed to run for five cycles of journal rotation, which is
6500 rpm.

The first case, Figure 6.57 has a forward rotating load, rotating
at one-half the journal speed. A maximum load of about 500 pounds is
developed in the bearing after 3-1/2 cycles as indicated on the plot.

The second case, Figure 6.58,is for a 100 pound backward rotating
load (EN = -0.5). This case is very similar to that of Figure 6.55
but the synchronous component is not as prevalent so the motion is very
close to being backward half-frequency* whirl. The instantaneous
whirl is given in Figure 6.59 and is oscillating about the -0.5 value.

It is obvious that the direction of rotation of the external
load has a great effect on the size of the resulting orbit for the given
case of the frequency ratio being 1/2. From Equation 3.23, it'is
obvious that the entire wedge effect of the journal bearing is lost if
the precession rate, d, is exactly one-half shaft speed. This explains
the large limit cycle for the case of the forward rotating load
(Figure 6.57) as compared to the relative small orbit for the backward
rotating half-frequency load (Figure 6.58).

The next case (Figure 6.60) considered has a vertical (y-
coordinate) oscillating load of FHY = 100 pounds and the frequency is
one-half the journal angular velocity, wj. The orbit spirals out in

phase with the exciting force and would eventually reach a limit cycle

*This is of course an average or mean value as discussed earlier
for horizontal journal bearings.
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HORIZONTAL UNBARLANCED RCTOR

6500 APM
1.00 IN.
1.00 IN.
5.00 MILS
MRX = 10.00
1.733
§s = 0.433
EMU = 0.001
SU = 288.111
TROMAX = 1667.33
FO = 100.0 LB.

N
R
L
C
TR
S

nonn R

NO.12308)

WT = 1.00

W= S0 L.

MUeS = 1.000 REYNS

FMRX = 489.8 LB. RAND
OCCURS AT  3.50 CYCLE

WS = 2.45

E€S = 0.211

FU = 0.30 LB.

FURRTIO = 0.0l

Esu = 0.001

EN = 0.50

6.57 Journal Orbit of an Unbalanced Horizontal Rotor Having a
Forward Half-Frequency Rotating Load for 5 Cycles
(N = 6500, W = 50, C = 0.005, L/D = 1/2, EMU = 0.001,

FO = 100, EN = -0.5)
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HORIZONTAL UNBRLANCED ROTOR

z

neen oan

6500 RPM
1.00 IN.
1.00 IN.
S.00 MILS
MAX = 3.4y
1.733
S = 0.433
EMU = 0.001
SU = 288.111
TRDMRX = S$73.56
FO = 100.0 L8,

A

(R 19 I s ¢

NO.123%082

WT =
W=
MUaS =
FMRX =
OCCURS RT
WS = 2,45
ES = 0.211
FU = 0.30 LB.
FURRTIO = 0.01
ESU = 0.001
EN = -0.50

1.00
S0 L8.
1.000 REYNS
171.9 LB. RND
0.32 CYCLE

6.58 Journal Orbit of an Unbalanced Horizontal Rotor Having
a Backward Half-Frequency Rotating Load for 5 Cycles
(N = 6500, W =50, C = 0.005, L/D = 1/2, EMU = 0.001,

FO = 100, EN = -0.5)
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HORIZONTAL UNBRLANCED ROTOR

NO.123083
N = 6500 RPM WT = 1.00
A= 1.00 IN, W= S0 Ls.
L= 1.00 IN. MUeS = 1.000 REYNS
C = 5.00 MILS FMAX =  206.4 LB. AND
TRSMAX = 4,13 OCCURS AT  3.43 CYCLE
S= 1,733 WS = 2.45
5SS = 0.433 ES = 0.21!
EMU = 0.001 FU = 0.30 Ls.
SU = 289.111 FURATIO = 0.0l
TRDMAX = 688.4S ESU = 0,001

FHY =100 LB. ENY=0.5

%

6.60 Journal Orbit of an Unbalanced Horizontal Rotor Having
Unidirectional Harmonic Loading for 5 Cycles (N = 6500,
W =50, C =0.005, L/D = 1/2, EMU = 0.001, FHY = 100,
- ENY = 0.5)
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6.61 Radius of Curvature and Whirl vs Cycles of Motion
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and continue the whipping motion. Figure 6.61 indicates a mean value
of 0.5 for the whirl under these conditions.

It would be impossible to include examples of all variations of
the loading functions possible with the present program makeup, not
to mention the capability of reading force values from data cards into
the program for each increment of dimensionless time, T.

The purpose of this section, as stated earlier, was to give an
indication of the possibilities that a program of this type has for
practical use in the design of journal bearing for arbitrary loading.
The average cost per case on the Burroughs B5500 has been approximately
ten dollars, including plotéing costs. Two and one-half minutes processor
time and one and three-fourths minutes I/0 time have been required per
case on the Burroughs machine. The automatic plotting feature of the
program makes the data reduction the easiest part of the job, instead

of the hardest.
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CHAPTER VII
SUMMARY OF BASIC ASSUMPTIONS AND RESULTS;

SUGGESTIONS FOR EXTENDING THE ANALYSIS

7.1 Discussion of Assumptions

The derivation of Reynolds' equation in CHAPTER III was based on
the following standard assumptions:

1. The flow is laminar everywhere in the fluid.

2. The shear stress is related to the shear rate by the

viscosity of the fluid (Newtonian fluid) which is
constant across the film.

3. Body forces are neglected (i.e. weight of fluid in the film

is small in comparison to the other forces acting there).

4. The inertia forces are neglected due to the modificd

Reynolds number being much less than unity, Qgg.gju << 1

5. The pressure across the film is constant.

6. The density of the fluid is a constant.

Reynolds' equation for the plane slider bearing was then
modified for the journal bearing configuration in rotating coordinates
by considering the linear combinations of the effects of rotation,
radial motion, and precession. Reynolds' equation was derived for the
journal bearing in fixed x-y coordinates by expressing unit vectors
and reducing the tangential velocities to the fixed coordinate set.

In so doing the small angle assumption was used to express sine and
tangents as their radian value. The journal bearing equation was then

reduced to the short bearing equation by ncglecting the radial flow
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due to pressure gradients, this required the restriction that L/D be
less than unity, as verified by Figure 3.4.

The exact nature of this assumption is not readily apparent from
looking at the Reynolds' equation. To better understand the meaning of
this assumption Equation 3.9 should be examined. Letting x = R§, that

equation can be expressed as:

wiy) = zlmag-—%x/l}(‘\.a,-?’l.)-i—ﬁ%ug +%u7_ (7.41

It should be apparent that the circumferential fluid flow is not
zero just because the expression containing 3P/36 is omitted. The
contributions due to the relative motion of the surfaces and the squeeze
film effect which result from integrating the continuity equation are
not lost by the short bearing assumption.

The equations of motion for the journal were next derived by
considering Newton's second law. Gyroscopic effects, angular accelera-
tion or shaft misalignment were not accounted for and therefore the
equations of motion reduced to two coupled,second-order nonlinear
differential equations. These equations were then solved by numerical
methods for the resulting transient journal motion as presented in the

previous chapter.

7.2 Discussion of Results and Conclusions

This analysis has proven the feasibility of incorporating fixed
cartesian coordinates in the study of journal bearings instead of using
the standard rotating coordinates. This makes the extension of a rotor

dynamics program to include fluid film bearings very simple since,
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without doubt, cartesian coordinates are the standard coordinate set
used in rotor-shaft analyses and therefore the extension would not
require a complicated transformation between coordinate sets.

The modified stability maps presented as Figures 6.14 and 6.15
are of great importance whén considering the design of journal
bearings that are operating under external loading or those that are
used for a particular application where the system axial coordinate
might be inclined at an angle to the horizontal. Figure 6.14 indicates
clearly that the region of instability increases as the system is
tilted from the horizontal and the balanced vertical unloaded journal is
unstable for all speeds of operation as indicated by Figure 6.15.

The constant external loading has been shown to stabilize the
journal with far less total load than indicated as necessary by the
stability map of Badgley (30), (Fig. 4.2). The example given in
CHAPTER VI clearly illustrated that a 150 pound external load would
stabilize the 50 pound rotor, whereas the stability map of Badgley (30)
indicates that the only way to stabilize the system is to increase the
equilibrium eccentricity to a value greater than about 0.73, as
illustrated by Figure 6,11. The system was shown to be very stable at
an eccentricity of 0.395 under the external load, as shown in Figure
6.13 and predicted by Figures 6.14 and 6.15.

The orbits of the unbalanced vertical journal indicate that a
certain degree of unbalance is desirable to reduce the magnitude of
the journal motion and bearing forces transmitted. The large limit
cycle of the balanced vertical journal could excite unwanted modes of

shaft vibration in an actual system. It is of interest to note that
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the addition of unbalance can greatly reduce the magnitude of the limit
cycles encountered with vertical balanced rotors and also keep the
forces transmitted to a lower value than that of a perfectly balanced
shaft (See Figures 6.17 and 6.33 for example).

The horizontal jourmal, in all cases tested, did not have the
static or dynamic transmissibility below a value of one at any time.
Figure 6.50 was the only plot presented of the phase angle between
the unbalance and the journal center displacement. Two important
conclusions can be obtained from this plot for the unbalanced horizontal
rotor. Figure 6.47 shows the resultant synchronous limit cycle of the
journal center but the phase angle in Figure 6.50 has a substantial
variation in magnitude. Many investigators assume a constant phase
angle to reduce the labor involved in obtaining closed-form solutions
for less complex rotor simulations. This single plot clearly indicates
that this assumption is not valid. One other important aspect of
this plot is the fact that the phase angle is oscillating about the
approximate value of 90°. Gunter (42) explains that when the phase
angle does not or cannot go through a complete 180° inversion, large
resultant forces are transmitted to the support system.

Unbalance in a horizontal journal is highly undesirable and should
always be reduced to the lowest possible value. The vertical journal,
however, requires the proper unbalance level to allow the system to
operate at a low amplitude limit cycle., The conclusions regarding the
stability of the vertical journal are listed at the end of section 6.4.1.
The most desirable design for a vertical journal should have the

unbalance level (EMU) just above 0.16 while the speed parameter w
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should be less than 2.5. Under these conditions, the journal should
exhibit small synchronous limit cycles and in some instances the
dynamic transmissibility will reduct to a value below unity.

The transmissibility plots have shown the cyclic nature of the
large resultant forces being transmitted to the bearing due to unbalance
of the journal. This could shorten the life of the bearing surface
considerably due to fatigue pitting and hence the loss of the load
carrying capacity of the bearing. However, as noted previously, the
proper unbalance level is necessary in a vertical journal to reduce the
journal motion and the forces transmitted to the bearing surface.

The concept of whirl has been derived and the plots of this
quantity indicate that a constant value of whirl cannot exist in a
horizontal journal (rotor), but can give the orbit the appearance of
a constant whirl due to the averaging of the cyclic nature. The
vertical balanced journal was the only configuration that gave a
constant whirl ratio.

The developed program has shown the ability to predict journal
orbits under various types of external cyclic loading functions and
leaves no doubt as to the capability of the program to track arbitrary
forcing functions. If the forcing function can be approximated by an
analytic expression, then the program may be easily modified to
incorporate this loading by changing a single card, otherwise a
procedure will have to be added to the present program to read data
cards containing values of force for each increment of time the
solution will track. The later process would present some difficulty

but any arbitrary time dependent forcing function could be incorporated
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in the program if desired,

With the more advanced methods of data display available to
researchers, the time required for the analysis of computer output has
been greatly reduced. This fact permits complex systems to be simulated
at a reasonable cost and within a minimum amount of time. Numerical
methods that were considered impractical several years ago are now
being used very effectively due to the speed and accuracy of the modern
digital computers. This fact is of great importance to the practicing
engineer due to the widespread availability of teletype terminals which
provide easy access to large time-sharing computers at a reasonable

cost to the user.

7.3 Suggestions for Extending the Analysis

The present analysis may be easily extended to include bearings
mounted in flexible, damped supports. This extension would require the
addition of two more equations of motion to represent the support motion,
The analysis by Gunter (7) and experimental investigations of Tondl (43}
indicate that bearing stability may be considerably improved by mounting
the bearing in a damped, flexible support system.

One feature of the present program that was not considered in
this discussion was the retainer stiffness and damping terms. These
quantities should considerably increase the stability of the system if
their values were properly chosen.

The conclusions presented in section 6.4.1 concerning the effect
of unbalance on the vertical rotor could be extended or corrected by a

more extensive study. The trend observed in the limited number of cases
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presented in CHAPTER VI indicate that the behavior of an unbalanced
journal can be predicted.

The present program has recently been modified to include only
the squecze-film effect ol the bearing, which has application in regards
to oil-filled clearances being designed into ball bearing supports to
help reduce the vibration level of the system,

The effect of journal angular acceleration and varying torque
loads would provide some very interesting transient journal motions
and woﬁld increase the understanding of the rotor orbits being observed
in experimental test rigs. The behavior of rotors under exXtremely high
acceleration rates is of great concern at present due to the require-
ments of the space vehicle boosters. A tremendous amount of energy
must be developed in only a few seconds to enable the booster to 1ift
the payload from the launch pad. A better understanding of acceleration
rates on rotor behavior could further the understanding of and, hopefully,
reduce the vibrations that have been encountered by the astronauts during
the initial stage of their flights.

Most analyses to date that have been performed on rotor systems
have assumed simple supports or linear relations for the bearings.

The present equations in the fixed coordinates could easily be included
in such an analysis to give a much better prediction as to the actual
system behavior.

Finally, for a complete analysis, the bearing should include
considerations for misalignment in addition to rotor angular accelera-
tion, torque, gyroscopic cffects, and the forces as predicted oy

Alford (29). This would then be an integral part of an n-bearing
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station, multi-mass, flexible rotor system. This solution will indeed

be of great interest to everyone in this field of research.
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APPENDIX A

Listing of the Computer Program to Plot the Pressure Profiles,
Pressure Surfaces, and the Film Thickness for the Short

Journal Bearing (with a sample of the line printer output)
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FAr 1 ¢ 1 >TtP 1 UNTIL 61 DO
REGIN

PXII] ¢« HPLI] x COSK{I=1]+CX[1I]
PYI1) ¢ BFPLI) x SINK[(I=1])+CY(T1)
END S

LYNE(PXsFY)b61,51);

FOR I € 1 STEP I UNTIL 61 DD
BEGIN

PLOTCCXETYsCYIL11,3))
PLOTC(PX{11,PY[1),2)}

END 3

PLOT(N,0,3)}

PLOT(Os=45=5)}

END 3

IF FILMTHICK THIN

BEGIN

PLOT(O»=1:e55=5)3

PLLTC(0s153)3

PLCTC(0,0,2)3 PLOT(PIZ2,0,2)3
PLCT(050,3)3
LYNECTHETA,HRh,63,1)3

PLUT(O» 1.55°5)3

END

IF NOT CAViTATE THEN
SCALLS(PI[O,*1,61,0,CDY»1)

ELSE
SCALE(PIOs*)sNi+1s16,YMIN,DY»1)3
IF NGT CAVITATE THEN PLOT(0»25+5)3
NUMEERC(Z45054,2350,10,X 50,23
NUMBER(2+500440)5046102XV20,3)3
NUMBER(3,50»4425504105Y »0,2)3
NUMBER(3,50»4400»0.102YV»0,3)}

LENGTHI[1] ¢ © LENGTH[23] ¢ 2 3

FOR 1 ¢« 0 STEP { UNTIL 20 DO

BEGIN

73 ¢ 0.05 x 1 3

LENGTH [I+42) ¢ 2B x 2 3

FOR J ¢« 0 STeP { UNTIL Ni{ DO

PLI+2,J+42) ¢ ZBx(1=2B8)%XP[0,J+1]) }

END 3

ANGX ¢ COS(P12/3) 3 ANGY ¢ SIN(PI2/8) 3
N1 ¢ N1 + 35 3

FOR 1 ¢ ¢ STEP 1 UNTIL 23 DD

FOR J ¢ 1 STEP 1 UNTIL NI DO

BEGIN

GRIDX[I»J) ¢ THETA(J] + LENGTHII] x ANGX 3
GRIDYLI,J) ¢« PLI,JY + LENGTHLI) x ANGY 3}
END 3

FAOR I ¢ 1 STEP { UNTIL 23 DO

BEGIN

PLOTC(GRIDX(!,1),GRIDY([I,11,3)}
PLOT(GRINX(I,1),GRIDY[I,11,2)}

FOR J & 2 STEP | UNTIL Ni DO
PLOT(GRIDX{I»J1sGRIDY[I»JI,1))

END3 )
PLOT(0»0,3)}

H
H
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L1

X = 0,50 XV

0.0008+00
0.0008+00
0.0008+00
0.,0000+00
2.31808=01
1.1178+00
4,8110+00
3,3018401
2.0248402
0,000@400

OQUOOQ§00

==0,050 Y

0.0008+00
0,000¥+00
0.,0008+0V
0.,0008+00
3.26608=01
1.401@+00
6e37168+00
4,81768+01
2.70584+02

0.000®+00

==0.70 YV

0,000@4+00
0,00084+00
J,00068400
0,00094+90
4,3438=01
17630400
B.56184+00
7,1008401
1,8968402

V0009400

,000@9+00
N,0008+00
n,0008+00
0,0008+00
Ne0008=01
242338400
1,169e+01
1,067/8402
2.,6192401

0,0009+00

0.0008+00
N40004+00
0.0002+00
6.604P=02
7.0979=01
2.8539+00
1.6249401
151979402
0,00044+00

0,0009+00

0.0000+00
0.0008+00
0.0000+00
1.4608=01
8.0178=01
3.6838+00
2.7960+01
2,1008402
0,000@04+00

0.,0008+u0
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APPENDIX B
The Short Journal Bearing
Computer Program Listing

(with a sample of the line printer output)
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I X3

[ SR RIS

HeGIA
COMMENT PIOGRAM AS OF APRIL 4, 19%69
COMMENT
THIS PROGRAM GIVES THE ThRANSLIENT SOLUTIUN UF A RJITOR =FLUID FI{M
BEAFING SYSTEMs THE HYDRUDYNAMIC FURCES IN X AND Y DIRECTIONS ARE
CALCULATED IN CARTESIAN (D~=DRDINATES,
fHE EJUATIONS UF MUTION ARE wREDUCED TD 4=-FIRST NKDER
DIFFERENTI AL FQJATIONS AND THEN THEY ARE SULVED FOR TRANSIENT
SALUTION RY INTZGRATING FORWARD IN TIML BY 6TH D RUNGF=KUTTA
METRUD AS A STARTER AND THEN EXTENDED bY ADAVMS«-BASHFORTH=MCULTON
PREDICTUKR CORRECZTDR METHUD I+ GOFULFR 1S FALSE DR RY A MUDIFIFL
EULER METHUD TF GDEULER IS TrHRUF.
AN CPTIUN TOR «KtEPING ONLY EVERY KSF CALCULATION IS INCLUDED
AS AN ODPTIuN ON CARD 11
THE INPUY UY THE PROGRAM IS AS FOLLOWS!
CARD 1,
1+ TMAX = ND. OF CYCLES OF RUTQR MOTINM
2eH=(RADIANS)»STEP INCREMENT,
JeN=nD, (7 FIRST OKkDER D.E, 10 BE SOLVED,
CARD 2,
1+ OMEGA = SPEED NF ROTOR (REV/MIN)
2. INCUMEIA = INCRLMENT DF ROUTQOR SPEED (RPwW)
3¢ NUINC = NO, OF INCREMFNTS THIS SET OF DATA
4, CUMEGA = SPtED UF JUURNAL + BLARING (RPM)
CARL 3,
1+EMU=DIMINSIONILESS UNJDALANCE
2.FN=MAGNITUDE 0OF ApPPLIED FORCE IN LBS.
3, En = NJMBER REPRESENTING THe FRACTICN DOF THE ANGULAR
FROUENCY [F THE ROTUR OF THE APPLIED FNRCE
4, FuUCx = CODONSTANT FORCE IN THE X=DIK,
S FUCY = CONSTANT FORCE IN THE Y~DIK,
64 FHAX = 4ARMONIC FORCE IN X=DIR.,
7+ Fnyx = FRACTION UF RUTOR ANG, FREQ OF FHx
&, FrY = 4ARMAINIC FORCE IN Y=DIR,
9, Fny = FRACTION UF RFRUTOR ANG, FREQ NF FHY
CARL 4,
{+CL=CLEARANCE BETWEEN JOURNAL AND BEARING C(INCH)H,
2oR=rxALIUS DF THE JOURWNAL (INCH)Y.
3¢l =LENGTA OF THE BEARING (INCH).
4.w=WEIGHT DF THE KOTOR (LBS).
SeMU=VISCISITY OF THE LURRICANT (REYNS),
6y HUR1Z = BOOLEAN = TRUE FOR HOKIZONTAL RJTOR AND
FALSE FDR VERTICAL KOTOKS

-

CAFL 5,
1+ KkX = ETAINER SPRING RATE IN XeDIR,
2¢ DX = RETAINER [DAMPING FACTQOR IN X=DIR,
3. KRY = ETAINER SPRING RATE IN Y=DIR,
44 Dry = ILTAINER DAMPING FACTOR [N Y=DIR.
CARLC 6,

1o INITIA, TIME.
2. INITIA, X=DISPLACEMENT,
3, INITIA, X=VELGCITY,
4y INITIA_ Y=DISPLACEMENT,
5. INITIA. Y=VELOCITY.
CARL 7.
1, N1 = INTEGER TN BE uSED IN WELOLES RULE INTEG, (TIY
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MJIST Rt A MULTIPLE OF STX{61 )
2e RELAX = RE_AXATION FACTOR < |
CARL B, = PLLTTIR CINTROL , 0 = NO PLOT, | = PLOY
CAFL 9,
Ie PLUGTY = TRUE FOK DKBIT PLOT
2¢ PLLGT? = TRJE FOK TR> PLOT
3. PLOT3 = TKJE FOR WHIRL PLOT
4, PLOT4 = TRUE FOKk PHASF PLOT
NITES ALL VARIABIES ON CARD 9 ARE B0DOLEAN
CAKD 10, CASF NUMBEK = MONIH=DAY=YEAK=NUMBER »uDY,CNO
CARL 11,
KSF = SKI2 FACTOR FOR SMALL STEP INCREMENT
mremm KST 2 TMAX X 6428 /( H x 900) =emus
CAkL 12 .
1ekxolL IM = NO, OF TIMES RK& STARTER IS Ty BE USFD (24)
2¢GNEULER = BOULEAN CUNTROL,., IF TRUE THEN THE SNLUTIQN
IS EXTENDED BY THE EULER METHDUs ELSE BY ADAMS ,

SAMPLE [ATA
5 ITMAX(CYCLES)I»0410 H » 4 N,
600 DMEGA SPEED, O SPEED INCes O NOo NF INCe » 800 COMEGA ,

0 EMU 0 FN 50 EN,=43000 FOCXs0 FUCY,=40000 FHX,1 ENXs17500 FHY, 3 ENY

De0112 L9759/ ksl o125 L1000 Wsl,408=6 MU ,1 HARIZ o
N KrRX»0 UkX »0 nKY ») DRY »
DT »=465 X »0 UX 0 Y 0 DY »
A0 N1 » 0,50 RELAX
1 PLOT
U OxBIT »1 TKS PLUT »1 WHIRL ,1 PHASE
228091 CASE NOe » 225869 MDY » 1 CWNO
2 RKSF ’
4 Rn6ILTM , 1 GOLULER ,

=Rt PEAT THE SIRIES FUR EACH CASE me= )

FORMAT QULTLIC("FQJIL, POS. = MaF T b X10,"FMAX =",Fll.48,/,
"S SMLF11,4sX17,"TRSMAX =", F 11,4,/
"SS "!\vuwobiXHOvzﬁDOX ﬂlvﬂhmcbb\b
TAS =" F11l,45X162"FOCY =",F11,48,/7»
"PFRG =", F11.b4s/e
X31o™FEHX =", F 11 ,4sX2,"AND ENX =", Féo2s/»
X312"FHY =", F11,8,X2,"AND ENY =", Fg.227)}
FORMAT CUTZ2 ("EQuT[, PUOS.(UNBALANCE) =P, F Tels/s

"SU =%, F11,4,/, "FU ="sF11,4,/,

"FUKATIO ="sF11,45/,"TROMAX =",F11.8,/ )}

REAL PRX,PrRY,T2X,T2VY 3

REAL EMAXS»ET,HMIN, TEMAX»HANGLE 3

REAL WWT 3

REAL FNCXsFOCYs<5sK6 3

REAL SINKK,CUSK<C 3

REAL  KBsALFU»ASSsYMINI,DYL1sEsPEC,PESsMDYSCNDO,T 3
REAL CONSTL 3

REAL NMXFE

REAL

XMINS YMINUX,DYSEMULEN,K1,K2,X3, Wy O-Z‘noxmnbnuxmobnnurvI:»ﬂc~0P~

TMAX, HoPTIsFXXsFYY}
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LIST LC(Px20+Ix45)/3600,P DIV 60,P MOD 60,1 DIV 60,1 MOD 60,
t DIV 60,E MOD 60)3

FORMAT FC1J3(/)s"THE CDST OF THIS KUN WAS $",F6,2510(/),
"PRDCESSOR TIME =",13," MINUTES AND ®,12," SFECONDS",5(/),
"I/0D TIME ="»13," MINUTFS AND ",12,% SECONDS®",5(/),
"ELAPSED TIME =",13,% MINUTES AND %,12,"™ SECONDS"™)}

IF YDu#=69 THEN

BEGIN TOG¢=69;3 EL1€TIMECL1)3 PRICTIME(2)3 J01€TIME(3) END

ZLSE

BEGIN EL2¢TIMEC1)} PR2¢TIME(2)} I0U2¢TIME(3)} Pe¢(PR2=PR1)/60}

[¢(102-101)/60; E€(FL2=EL1)/603 WRITE(Qs»F,sL)} END}
END OF THE TELLTIME PROCEDURLS

PROCEDURE RKSTARTS (K aNF x1sH,Y,F DX, TEMPY, K1 ,K2,K3,K8,K5,K6)}
VALUE K,NF,HJREAL X1»HJINTEGER K,NFJ}AR
RAY Y[O0s013ARRAY DX, TEMPY,K1,K2,K3sK4:KS,KE6(0)}
PROCLDURE FIBEGIN INTEGER I,J3REAL X3
FUR T€)STEP IUNTILINF=1300 BEGIN XeHXI+X13F(X,Y[Yon),DX)3F
AR UeISTEP TUNTIL K JU BEGIN KI[TJ)¢DXUJIXHITEMPYL J)JeK1D JY/3,04Y0T, 3 ENDS
FOH/3,0+X» TEMPY,DX)3TUR JeiSTEP I1UNTIL K DD BEGIN K2[J)eDXIJIXHITEMPY[J]
€(K2LJI%60+K1TLUIXE D)/ 25,04YII,J)JENDIF(CHX2:,0)/5,0¢X,TEMPY,DX)SFOR J¢15
TEP LUNTIL K DO BEGIN K3[yJ¢DX[JIXHITEMPY[ JJ¢(K3LJIx15.00K2[J)1%12,0+K10y
1)/ 4404YL1,JJENDIFCHX»TEMPY,DX)IFOR JeISTEP IUNTIL K DO BEGIN K&[JJeDXI
JIXKHITEMPY[J)e(KA[JI%Bo0=K3[JIXS0,04K2FJIX90,04K1[JIX6,09/R1,0+YLIsJ)END
JFC(HX2,0)/340+Xs TEM3YSDX)SFOR J¢ISTEP IUNTIL K DD BEGIN KSLJIeDX[JIxHIT
EMPYL J1e(KkaTJIXB0+KITJ)Ix10e04K2LJIxIE,0¢K1{JI%X6,0)/T5:0¢YI1»JIENDIF ((HxX
860)/5:0¢X, TEMPY,DX)IFOR U¢1STEP LUNTIL K DU BEGIN K6[J)eDXCJIXHIYTI*1,
Te(KI(JIX23,04K30UIX125,0=KS5[UIxB1,04KE{JI1%125,0)/192,0¢Y[TsJIEND END EN
n;

b4 THE FOLLOWING PRUCENDURE 1S THE PLOTTER CALL THAT GIVES GRID FNR
4 THE TReX=Y MOTION AND THE WHIRL=RADIUS PLOTS
4 It THE BOOLEAN BOOD IS TRUE THEN THE RIGHT Y=AXIS IS LABELED
PROCEDURE SBGRIJCAL1,NY,AL2»NX,AL3sNT2ALG»N&,BD0D)Y)
VALUE NY,NxsNT,N4 3 REAL NYsNXsNT,N4)
ALPHA ARRAY A_1»AL2,AL3,AL4[0)) BDOLEAN BDC }
BEGIN
REAL XOT 3
NX ¢ =NX 3}
N4 ¢ =N4 3}
AXISCO»O0»ALLIINY»=6,90,YMIN,DY )}
AXISCO0,AL2sNX» =B, 0, XMINSDX )}

IF BUOD THEN
AXIS (8,0,ALA,N4,=6,90,YMINI»DY1)
ELSE

AXIS (8,0,AL85)0"6,9050,DY)}
AXIS (B»,»62AL2,0,=8,180,0,Dx )3
PLOTC0s6,2)3 PLITCO026¢591)3 PLOT(B»6,551)) PLOT(Bs651))
PLOT(e85640553))
SYMBOL(s806¢3,041sALP22053)3 NUMBER(,72356,3,0,1,MDY»0,0)}
NUMBER (,82,6439041»CN0»0,0)3
SYMBUOL(O,856415),1,ALP165,0,5)3 NUMBER(C571,6,1,0,1,EMU,0,3)}
SYMBUL(1,685,643,0,1,ALP10,0,13)% NUMBER(1:491,6¢350,15WN2050)}
SYMBUL (140855646120, 1,ALP2250517)) NUMBERCL:.91,6,150,1,FQ0»0,1)}
SYMBOL(3,1596,30041,ALP3,0,14)3 NUMBER(3,8056,320,1» OMEGA»0,0)}
SYMBOLC3,415,64150¢15ALP23,0,4)3 NUMBER(3,8,6¢1,0¢1,EN»022)3
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SYMBDL (4,70»6,300,15ALP6,0,34)3 NUMBER(4,7»6,350,15CL»0,2)3
SYMBOL(8,7264150,1,ALP8,003)3 NUMBER(4,8,6,150,1+5,0,3))
SYMBUL(64326035)015ALP25,0,5)3 NUMBERC6+¢8755¢3,041sL7(2%XRY00,2)}
SYMBOL(6,0556412001sALP11505,20)3 NUMBER(643156,1»0,1sMU»058)3
XOT ¢ 4 » NTx0,26 3

SYMBOL (X0T2645350,142AL350,NT )}

END OF SBGRID J

g THE FOLLOWING PROCEDURE CALCYLATESs THE sHORT BEARING FORCE
% BY THE USE OF WEDDLES RULE INTEGRATIDN

PROCEDURE FORCE (X,Y,VXsVYaN))

VALUL XsYsVXsVYsNJ

REAL X,»Y»VXyVY}

INTEGER N3
BEGIN
REAL H3,FXxsFY3}
REAL KITI 3
INTEGER 1,43
K8 ¢« 0 J

IF X # 0 OR Y # 0 THEN
KB ¢ (XxyYeYxvX)/(Xxx+¥YxY)}
FOR 1«0 STEP 1 UNTIL N DO
BEGIN
COSKK « CDSK[Y] 3 SINKK ¢ SINK[I) }
HIT ¢ 1 = x x COSCK = Y X SINKK }
H3 ¢ HII x HII x HIY 3
PUI] ¢ (~xxSINKC ¢ yxCOSKK + 2xALFD x( VXXCOSKK*VYXSINKK))/HI
IF PL1)<0 THEN 2(1]1e¢03
PX[1) € PLIY % JOSKK 3
PY[I] ¢ PLI) x SINKK 3

ENDJ

FXe0;

FYeO0s

1 ¢ N7/ 63

FOR J ¢ 1 STEP 1 UNTIL I DO

BEGIN

J7 € Uxé 3 J6 € U7 = 1 3 US e JT=23 J4 ¢ JgT7=3 3

JI € J7=83 J2 ¢ J7=53 Ul € JT=63

FX ¢ ( PX[J1l+ S5xPxlu2)+ Px[J3)+ 6xPX[JaYe+ PX[J51)+
S5xPX[J6]+ PX[JT)) ¢ FX

FY « ( PY[LJ1le 5SxPyY[J21+ PY[J3)+ 6xPY[Ja)+ PYLJUS5)+
5xPY[J6)+ PYLJTI)Y 4+ FY 3

END;

KKK ¢ DEL X 0,43 3

FX ¢ FX x kKK 3

FY ¢ FY x KKK }

FXXe=FX3 FYYewFyY}
END OF FORCES

4 THE FOLLOWING PROCEDURE IS THE FUNCTION CALCULATOR FOR THE
X 6TH ORDER RUNGE*KUTTA INTEGRATION PROCEODURE.,

PROCEDURE FRK(X»Y»2DX)} VALUE X3

REAL X3 ARRAY Y[0],Dx[0) 3

BEGIN

FORCE CYL  11,YD 31,Y0 23,YL 41sN1) 3

IF K = 2 THEN
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BEGIN
FXXL ¢« FXX 3 FYYL ¢ FYY 3
END tLSE BEGIN
FXX ¢ FXXL ¢ FXXXRELAX + FXXL %X (1=RELAX) J
FYY € FYYL ¢ FYY X RELAX 4 FYYL x (1=RELAX) J
END 3
DXI[Y) ¢ YI[2] 3
DX{2)e«EMUXCOS( X ¥+ KIxCOSC(ENX X J)+K2XFXX + K5
s(KOXY[1] + Ki11 x Y[2)) 4+ K7 x SINCENX x X )}
DXLU3] ¢ YL4) 3
Dxl&4]e EMU x SINC X )
(K10 x Y[3) ¢ <12 x Y{
END OF FRK 3

+K1xSINCENX X ) +K2xXFYY=K3 + K6
8)) + K8 x SINCENY x X )}

¥ THE FOLLOWING PROCEDURE CALCULATES THE FUNCTIONS NEEDED IN
X ADAMS=BASHFURTH=MQULTON INTEGRATION METHOD
PROCLDURE FUNCTION ¢ K)}3 VALUE K3 INTEGER KJ
BEGIN

FORCE (YL 131,Y0 3Y,¥Y[D 2)sY[ 43,N1)
IF K = 2 THEN
BEGIN
FXXL ¢ FXX 3 FYYL ¢ FYY 3
END ELSE BEGIN
Fxx ¢ FXXL ¢ FXXxRELAX ¢ FxXL x (1=RELAX) }
FYY ¢« FYYL ¢ FYY X RELAX ¢ FYYL x (i{=RELAX) }
END 3
FL2)«EMUXCUS(YL 0))+ KIXCOSCENXYL 01)+K2xFXX + K5
=(K9xY[1) + K11 x Y[2]) + K7 x SINCENX x Y[0])}
AY[11,K=1) ¢ F[2] 3
Flale EMU x SINCYD O0))#KIXSINCENXYD 01]) +KZ2xFyYy=K3l + Ké
“(K10 x Y[3] ¢ €12 x Y[4)) + K8 x SINCENY x Y[0))}
AY[12,K=11 ¢ F(4] }
END OF FUNCTIONS
¥ THE FOLLOWING PROCEDURE IS THE ADAMS=BASHFORTH=MOULTON
¥ INTEGRATIUN PRJCESS
PROCEDURE TIMESTEP (TMAX, H» N» AY, NA)J
VALUE TMAXsHaN)
REAL TMAX,H} INTEGER N, NA }
REAL ARRAY AY[J,01] 3
BEGIN
INTEGER I,J } LABEL REPEAT » SMASHJ}
FOR 1 ¢ O STEP § UNTIL 4 DO
AY[I»1)eYD 1))
Ke2s
REPEAT!
BEGIN
REAL PPIINTEGER I»JJ
REAL VELD2 3
FUNCTION ( K)j
JOURANG « YI[O) )
JOURANG ¢ JOURANG = PI2 x ENTIER (JOURANG / PI2 ) )

AY[10,K=1] ¢ (JOURANG=ANGLECY[3)»Y[1))) x CONSTY 3
K ¢ k=t ;

IF AY([10,K) > 130 THEN AY[10sK] ¢ AY[10,K] = 360

ELSE

IF AY[10,K) S =180 TREN AY[10,K) ¢ AY[10,K) + 360 )
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REGIN

ENDS

SMASH

BEGIN
FOR I ¢ 2,4 DD
FEGIN
11 €« 172 + 1)
AYLTokT € YI)®AY[IoK=11+(HO24)xX(55xAY[]]1,K=1)=50XAY[]II,K=2]
+37xAY(TI,Kk=3)=9xAY[1T,K=4)) }
AY[I=1oR)eY [ I=1)eAYI 1" 1,K=1)+(HO24)x(OXAY[I,K)+19XAY[]sK=1]
*S5xAY[[sK=2] + AY[[»K=3])}
ENU 3
FUMCTION (K+3) 3
FOR 1 ¢ 254 0
BEGIN
IT € [/72+10U ;

AYTTI»K) €Y({I]e AYD]sK] % (f1=RELAX) 4 RELAX x ( AY[1s,K=1)] + HO24 x
(OxAYLTI,K) + 19xAY[II,K=1] = SxAY[T],k=2] + AY[lI,K=3) ) 3

END 3

FOk 1T ¢« 15,3 L0

BEGIN

AYTIs»KI € AY[Isq=1] + HUZ4 X (S55xAY[]J+1lsK=1) = S59xAY[14i,K=2]) +

I7xAY[I+10K"3) = OxAY[I+1,K=4) ) }
AY[IsK] € Y{]] ¢ AY([JsK] x (1=RELAX) ¢ RELAX x (AY[I,K=11 +
HJ24 x (9XAY[T+1,K) + 19xAY[[41,K=1) =SxAY[(I+1,K=2] +AY[I+1,K=33))}
END 3
ENT 3
END
ELSE
BEGIN
Y{C) ¢ Y[O) = H }
FOR 1 « 1 STEP { UNTIL 4 DD
RKAY{0,1] € Y(1] 3
RKSTARTS (4,1,Y[01,H,RKAY,FRK,RKDX,RKTEMPY ,RKK] ,RKK2,RKK3I,RKK2,
RKKS»RKK6E) )
YI[Q) ¢« Y{(O) + H }
FOIR 1 « 1 STEP | UNTIL 4 DO
AY[I»k) ¢ Y1) ¢ RkAY[1,]I1) 3
END 3
ETe SQRTCAY[1»K)a2 & AY[3,K1w2 Y 3
IF ET> EmMAX THEN BEGIN
EMAX & LT} HMIN € CLX(1=EMAXIX100040 J
TEMAX ¢ AY[O,K1/6,28 3 HANGLE ¢ ANGLECAYI3,K)»AYI1,K))XCONSTL 3
END 3
IF ET > 0,99 THEN .

YO1) ¢ AYDl,K) & AY[1,KIX0,99/ET 3
Y(3] ¢ AY[3,K) ¢ AY[3,KIX0,99/ET )
IF K > 40 THEN BEGIN

FAIL«TRUE? GD TO SMASH}

ENDJ

IF K > 900 THEN  SWITCHGO (TRUE) 3

IF Kk 2 (B95 = (SF) THEN GO TOD SMASH }
Kek+1)

IF YIO)] < TMAX THEN GO TD REPEAT 3

H

Kek=1}

IF KSF # 1 THEN
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oAU |01, 11T RO T

LUl

SWIT(LHGU (FALSE)Y I

IF FAIL THeN NA
YI{G] € AY[(UsNA)
Y[1) ¢ AY[1snA]}
YLz]) ¢ AY[2oNA]
YI3) € AY[J3,NA)
YE4] € AY[4shA) 3
FND UF TIMESTEPS
TELLVIMECLPY 3

{=]1 ELSE WA ¢« K 3}

we ws ‘es 4

-

VvV ¢ 1 3

% LAaTA (ARDS AL NOw READ Iw
ACAKD 8
READ (CR,/,TmAX, H, N) [ALLDUNEY 3
REALU (CR»/s0OMEGA, INCUMEGASNDOINC, COMEGA )
REAUDCCRS/sEMULFI,EN, FOCX,FOCY,FHX,ENX,FHY,ENY)S
REAUCCR» /2Ll sRs s WoMU,HUOKIZ) S
READ (CHo/sKEXsIRX»ARYPDKY )
READ(CK,/,FUR [0 STEP | UNTIL 4 DO [YL 111)3
READCCR,/sNIpRE_AX )
READ (CK»/»C8)3
READ (CR,/,PLOTI,PLOTZ2,PLOT3,PLOTA)S
READ (Ci,/,CASEND» MDYSCNO )
REAL (CRs/,KSF)Y 3
READ (CRy/sRKOELIMeGOFULEKR) S

Ge32.,2x123

HNZ4 € H/24 3 D0 ¢ 1710 x THMAX / H 3}

HX12 ¢ 1 /(12 x H) 3}

PI2¢8xARKCTAN(L )}

TMAX ¢ TMAX x PI2 } TMAXT ¢ TMAXS

CONSTL € 360 / 212 3

PI « P12 /7 2 3

NEL ¢ P12 /7 NI 3

FIR 1 « 0 STELP 1 UNTIL Ni DO

BEGIN

KKk €« DEL x 1 3

COSKLI] ¢ COS(KCK) } SINK[I] € SIN(KKK)
END3

INCSUFAR ¢ 0 3 .
SPEEDLOOUP

NUMSTAEB ¢ FALSE

NUMERINSTAG ¢ 0 3

KK € { = KsF 3 i

XMIN ¢ YMIN € =1 3 DX ¢ DY ¢ 0,33333333 3
FAIL ¢ FALSE 3

ALFD ¢ UMEGA / J0OMEGA

OMEGA€DMEGAX(2X2])/ 60 }
COMEGACCOMEGAX(2xP1)Y/ 60 3

MeW/G}

KKK ¢ M x CL x JIMEGA x DOMEGA 3

Kt € FO / nKK }

K2 ¢ (MU x R x [ xLx_ xCOMEGA)/(2xKKKxCLXCL)J
IF NOT HORILIZ THZN FOCY ¢« FOCY + W 3
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K3 € wW/KKK }

K4 ¢ K2 x nKK 3

K5 € FOCX / KKK 3} K6 ¢ FDCY / KKK 3

K7 ¢ FHX/KnK 3 K8 ¢ FHY/KKK }

KKKk ¢ KKk / CL 3

K9 ¢ KRX/KKk } K10 ¢ KRY/KKK }

KKk ¢ KKk / UMESA 3

K11 € DRX/KKK 3 K12 ¢ DRY/KKK }
COMMENT

S = SOMMERFELD NUMBER = MU(NJ=RPSIX(LDR22)/(WWTXNXCx2)

SS = SHDRT BEARING SOMMERFELD NUMBER = S x (L/D)e2

SU = SOMMERFELD NUMBER BASED ON THE ROTATING UNBALANCE LOAD
WHERE FU = MxCxgEmUx(OMEGA=RAD/SEC)=2

WhT = LOAU RATIO = SQRT((MG=FOCY)*2+FUCX*2)/MG

P = PROJECTED LJAD =(WWT/(LXD))x W

WS = DYNAMIC SPEED PARAMETFER = (NJ=RPS)IXSQRT(MC/(WWTXW))IX2PI
TRS = STATLIC TRANSMISSIBILITY = S(L/R)*2 xF(DIMs BEARING FODRCE)
TRD = DYNAMIC TRANSMISSIBILITY = G/(CxXOMEGA#2)SS/EMUXF(DIM,)
END OF CUMMENT

WWT & SQRT((W=FICY)*2+FNCXn2)/¥W }
IF WAT = 0 THEN BEGIN
S ¢ MU x CUMEGA xLxRxRXR / ( CLxCLxWxP]) }
WS ¢ OMEGA x SQIIT(CL/G) 3
END ELSE BLGIN
S € mU x  UMEGA xLxXRxRXR / ( CLXCLXWxPIXWWNT ) 3}
WS ¢ OMEGA x SQRIIT (MxCL/(WNTXW)) 3
END
SS ¢ Sx(L/(2xR))*2 3}
PRRGE(WWNT/ (Lx2xR)) x W }
FMAX ¢ O 3
EMAX ¢ 03
L 4 1TERATIVE PROCESS TO FIND EQUILs ECCEN, FOLLOWS

ANSI ¢ FIR ¢ INJR ¢ 0.1 )
" DL? €(2xR/L)%2 3
MUNCEMORE 8
EE € ANSI x ANSI 3 EE2 ¢ {=tE }
SSU ¢ DL2 x EE2 x EE2 /7 (P1 x ANST x SQRT (PIxPIxEE2 + 16xEE) ) J
IF SSU < S THEN =
IF ABS((SSU=S ))/S <« 0,01 THEN
BEGIN
ASS ¢ ANSI 3} G) TO SKIPIT 3
END
ELSE
BEGIN
ANST ¢ ANS] = INCR 3
INCR ¢ INCR /2 3
END3S
ANST ¢ ANS] ¢ INCR 3
GO TG MONCEMURE 3
SKIPIT 3

IF EMU # 0 THEN
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BEGIN ‘

Fi) € MxCLXEMUXDJMEGA=2 J
FURATIO ¢ FU / A 3

SU ¢ AxS/Fu

ANST ¢« FIR ¢ INCZR ¢ 04
DL? «(?xk/L)%x2 3
UNCEMOKE 8
EE ¢ ANS] x ANSI 3 REZ2 ¢ {=tE }
SSU ¢ DL2 x LE2 x EE2 7/ (Pl x ANST x SWRT (PIXPIXEE? + 16XEF) ) 3
IF SSU < Su THEN
IF ABSC(SSuU=8U))/SU <« 0,01 THEM
BEGIN
AnNS ¢ ANST 3 GD Tp SKI1P 3
END
ELSE
BEGIN
ANST ¢ ANSL = INCR 3}
INCK ¢ INCR /2
END 3
ANST ¢ ANSL + INCR 3
GO TU ONCEMORE 3
SKIP
END 3
END OF JTERATIVE PROCESS FOR EFQUJIL, POS,

THE FOLLOWING 2ROCEDURE CALL CALCULATES ALL OF THE VALUES FOR
TIMt STEPS UF T TMAX
TIMESTEP (IMAXs, Hs N, AY,NA)J

IF NUT HORIZ THEN FOCY ¢ FDCY = W 3
TRSMAX € FMAX / W }
IF EMUu # 0 THEN TROMAX & FMAX / FU }
CIMEGA ¢ CUMEGA X 60 / P12 DMEGA ¢ OMEGA x 60 / P12 3
WRITEL (LPIPAGE]}))
WRITE (LPs<X100s38C"a")sX2s"CASE "»110,X2,38("*"),/ >» CASEND)S
1F HURTZ THEN
WRITE (LP»<X46»,"HORTZONTAL RJUTOR SYSTEM">)
ELSE
WRITE (LPs<X47»"VERTICAL ROTUR SYSTEM™>))
WRITE (LPs<X4By WFLUID FILM BEARING®»///>)}
WRITE (LP»<X6s"™4 =",F6ebs" RAD.",X9 ,"IMAX =%,F8,3," RAD "»X10»
WAMEGA ="5F9,25" RPM"» X105 "COMEGA =",F9,2,"™ RPM™:/»
X6 "EMU E",F6e30™ DIMeToXB,"FO =2",F8,3," LBe"pX13»"CL =",E9,2,
" OINGMe X132k 37, F6,22" INeMs/>s
X6,ML =",F6,2," INJ", X11,"W =",F8+2," LBe"sX14,"MY =",£9.2,
" REYNS™,X9,"FOU 2", E1144,X1o™AND EN =" ,F7,3 »
//>» I.q:»x-ozmc>-ncxmmpsMXC~ﬁownrvz»rsz»zcnﬂonmsz
WRITE (LPs<X6s»"ELAXATION FACTOR = ", F6.3sX10s"GIEULER = "»L65X10»
"RKG6LIM = " , 15,7>, RELAX,GUEULER,RK6LIM)}
WRITE (LPs»<X6»"AT = ",F6,2>» WWT)S
WRITE (LP,<X6 s:zn = ", 14 ,/>,N1) }
WRITE (LP»<"MAX, ECCENTRICITY s",F6,4»" AT ",F6,3»" CYCLES ",X15,
WHMIN =%,F7¢3," MILS AT ",F6,1," DEGREES CC FROM X AXIS"y />,
EMAX, TEMAX»HMINSHANGLE)
WRITL nrv.ccdn‘»stﬂx>x~msqmmsz‘mm-ﬂonx-zm-wDn<s
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M N W R Qo

VLT?vﬂIX\m2x~ﬂI<\mZ<um
IF EMU # 0 THEN
WRTTE (LEsuUT2, ANS,SUSFULFUKATIO,TROMAX 33
WRITE (LPr<"KETAINER SPECS AREI™,/,X10,"KRX SPL,EL1,4,X2,"LR/INY,
X10,"DRX nzur_—.n-xm»:#nlmwn\Hz:-\nxmm:zxz« s, E1 4, X2," B/ IN",
X1Cr»"0RY b1l a2, "LB=SEC/IN"S /> KRXIDRXsKRY,DRY Y}
WRETE (LFs<Xas™TIME", X mszxicmnoxnxm\=x|<mr.:nxw‘=<|oun.=~
X7,"YmVe| o ", X7, "FORCE",XE," RS "aXB,"RADIUSY,Xx3," PHI®, x4,
:UTwa-xw‘zrmﬂbxs\\vvm
IF NUMSTAR ThEn
WRITE (LFs<XI0 ke nphbrnngnn NUMFRTCAL INSTABILITY snasudnudanwn®,
/oX10s 165" USCILLATIONS IN ",17," STEPOS"s//>s NUMER INSTAR,NAXKSF )}
WRTTE nrr-Aﬂc.c‘x_.aﬁm_».a»xwv-ﬂmv.vsxpswnﬂ_n.e»x,u.maﬂw.uu.xvsuav~
FOrF 1 ¢ 1 S>TEP UNTIL NA DO I
FIAR JUe G SEEF 1 UNTIL 10 DOL AYLJs11)1)3
IF FATL THeN WRITE (LPs< wwtkwhbksa sk FAILUREw bahastnkanex™>)}
The KEMAINPER OF THE PROGRAM PLUTS THE FALLGWING pATA

= JOURWNAL URBIT PATH
= TRANOSMISSIBILITY AAND X=Y MOTION UN THE SAME GRID
= THE wBIRL AND RADIUS OF CURVATURE OF THE PATH

4 = pPHASEL ANG_E OF DISPe RLLATIVE 10 UNBALMNCE

ke ks NUMBER OF BLOCKS PER StT OF DATA =(NOINC + 1)%x SuUM OF CAKD ©

IF CS # 0 THEN
tEGIN

REAL wXYZ7

N v

NA ¢ NA = |

IF vv = 1 THEN REGIN

FILL ALP1Dx] WITH "BALANC™,"ED ROT™, 0K "3
FILL ALP2(*] WITH "NO, "3

FILL ALP3r«] WITH "N = w,n RP", "M "

FILL ALF4T*) WITH "R = w,n IN",», " 3

FILL ALPSI«) WITH "L = ", IN",v, "

FYLL ALPeL#) WITH "¢ = H,n MI®,"[| 5 "}

FILL ALP7Iw) WITH "TRSMAXx"™," = "}

FILL ALFET*] WITH "§ = "3

FILL BLP9[ %) WITH "SS5 = »j

FILL ALPIO(#) WITH Py = "," LB",", A |

FILL ALF11(x] WITH "MUBS =n,w P REY®*,"NS "3
FILL ALPI20La) WITH "EMAX =w,» n,w LBu%s®™ AND * 3
FILL ALP13t*] w]TH ®0UCCURS™," AT Hyn CYs®YCLE "3
FILL ALF14(*) WITH "py5 = »;

FILL ALPIS5(#) WITH "gS = 1w}

FILL ALF16L*) WITH "EMU = w3

FILL ALPI7(%) WITH "sU = »}

FILL ALP1IB(#] wWITH "TRDMAX®"," = "3

FILL ALPIO9(%) WITH "Fy = n,n» "," LB, "3

FILL ALP20[+) WITH "FURATI®, "0 = v,

FILL ALP21(#) WITH "¢SU = v

FILL ALP2?2(%] WITH g0 = n,n LPLIW R ¥

FILL ALP23Lw) WITH "EN = w}

FILL ALP284L#*) WITH "UNBALA","NCED R","UTOR "}

FILL ALP250#) WITH " /D = »;

FILL ALP26(*] WITH "TRANSM®,"ISSIRI®," ITY, ","TR = F*,"/W (DI",
") "3

FILL ALP270#) WITH ®"CYCLES™,™ OF MOW,"TION ™ j
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LN

FILL ALFZA(#] wlTH "SHAFT ®,"x=Y MU","T110UN ","(DIM,)")

FILL ALFZ29Lw) wITH MINSTAN","TANEOU™, ™5 wHIR™,™| w )
FILL ALF30L#] WITH "KADIUS™s" NF CUM»"KVATUR", " "3
FILL ALF3TLe] wWITH "x=MOTIM","0ON "}
FILL ALF32_ %] WITH "Yy=MDTI","ON "}

FILL ALF33(#«] wITH ®mwhHIR|L =}
FILL ALF340#%) alTH mpHASE »,"ANGLE ","™ BETA"}
’

FILL ALF4OLa] WITH "HQRIZQ"»"NTAL B"

"ALANCE"™,»"D ROTQ"»"R "3

FILL ALFaiL+) wITH WYERTIC™,"AL BALY","ANCED ",*RJTOR " 3}

FILL ALF4?lw] WITH "RORTZO","NTAL U","NBALAN","CED RO","TOR "3
FILL ALFG43[w) wITH "YERTICm,"A UNB®","ALANCE","D ROTO","R "}
FILL ALP4a L] WITH "wT = ¥

THE X=Y (NUIDINATES OF A 3 INcH RApPIUS cIRcLE IS cALCULATFD
FIx THE FLUTTER PROCEDURE THAT WILL PLUT OUT THE JOURNAL PATH

K ¢ 0 }

FOF T ¢ =3 STEP 0405 UNTIL 0,001 DO

BEGIM

K € Kk 4
CXTKr] ¢
END

J4 € xk=1 J

FIF M € § STEP
GEGIN

J5 ¢ K+N 3} JE ¢
CxXludS) e€6=CxlJ6]
CYIJS] ¢ CY(Jo)
ENDS

K ¢ R+ Jb4

13
T + 3}

J4 ¢ K=1 1}
FOR N ¢ 1 STEP 1§
BEGIN

J9S ¢ KN} J6 ¢
CX{J9) ¢ (CXx[Js6]
CYIud) €6=CY[JO)
ENDS

CIKFT ¢ 2xa=1 3}

PLET (2202=4))
VV ¢« VV 4+ 1 )
ENG 3

CYftrkl ¢ SQERICABS(9=TxT)) + 3 3}

UNTIL Jo DD

K=N }
}
5

UNTIL Ja DO

KeN }
}
H

PLOT (250 5=5)3

SCALES C(AYL3»w)sNAYMIN,DLY,CS5)3
SCALES C(AY[L,+#]1»NA,XMINSsDX»CS) 3

LYME (CX,CY,CIRIT,1))

PLOT (0,3,3)3 P_0T(6,3,2)) PLOT(3,6,3)3 PLOT(3,0,2))

FOR 1 € 0 STEP D,

BEGIN

30 UNTIL 64001 DO

PLOT(35T»3)) PLOT (3.1,T702)3

ENDJ

FOR T ¢ O STEP J,30 UNTIL 6,001 DO

BEGIN

PLOT (T»353)3 PLOT (7+2.90,2))

ENDS

FOR NUMB ¢ 0,8 STEP =0+2 UNTIL 0.,15 0O
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NUMBER (3¢ 3xNUWB*,5252,75,0,1 »NUMB,0,1)}
FOR NUMB ¢ 0,2 STEP 0.2 UNTIL 0,801 DO

NUMBER (2,72,3+4 3XNUMB=0,05 » 0,1 sNUMB,0,1)}

SYMBOL (AY[1,1)s AY[351)s ,489, ALPHAY » 0,=13)3
SYMBOL CAY(1oNM)sAY[3»NMI»0,12ALP1»0,=15))

CS ¢ 6,28 /(HXKSF) 3

FOR | ¢ CS STEP CS UNTIL NA 0O

SYMBOL CAY(1,I)» AY[351I), ,07» ALPHAL , 0, =5)}
IF FAIL THEN

SYMBOL C(AY[I1,NA), AY[3,NA),0¢18,ALPHAL,0,=12)}
LYNE CAYLSse])s AYI[324)s NA, 133

IF EMU = 0 THEN

BEGIN

IF HORIZ THEN

SYMBOL (0,94,9,25,0,212ALP40,0,25)

ELSE

SYMBOL (1,12,9,25,0,21,ALP41,0,23)}

END

ELSE

IF HORIZ THEN

SYMBOL (0e765942550.215ALP0G2,0,27)

ELSE

SYMBOL (0498,9,2550,21,ALP43,0,25)}

MU ¢ MU x 100000 3
CL ¢« cL x 1000 3

SYMBUL{5,60)6.9'.l’ALP2’013)} NUMBRER(5,7658,9s5,1 sMDY 20,03
NUMBER (5.85,849,+1 ,CND,0,0)}

SYMBUL (0 ,75,8,505 ,14,ALP3,0,13)3 NUMBEK(1,11,8,50» ,14,0MEGA,0,0)3
SYMBOL(O 475584235014, ALP4,0,13)3 NUMBER(Os79558,255+14-,R»0s2)3
SYMBOL(O,755840)5414,ALP55,0,13)} NUMBEK(CO¢7558,005014sL2002)5
SYMBOL(O 7957 e735¢14,AP6,0,14)} NUMBER(O o757 4752« 14sCL2052)3
SYMBUL(OW759745)se18,ALP7,0s8)3 NUMRER(1.35,7450,¢14,TRSMAX,0,2)3
SYMBOL (O ,7557 4255 ¢ 14, ALP8,0,3)} NUMBER(O ,87,57 ¢25541855,0,3);
SYMBUL(O.75)7.00.14}ALP9)O:4)} NUMBER(140s740s,1655S,50,3)3
5YMEUL(3.75)8.53'QIQ}ALPQQ;O)G)} NUMBER(3487,8,505 414sWNT 50,23
SYMBUL(3,75,84235,016,ALP10,0,13)3 NUMBER(A,11,B425,,14,W,0,0)3
SYMBOL (3,7558,005,4145,ALP11,0,20)} NUMBER(O,11,84005 ,18,MUs0,43)3
SYMBULC3475,7e755,018,ALP12,0,22)3 NUMBERCU 45,7 4755 14,FMAX,0,1)3
SYMBUL(3,90,7,53,414,ALP13,0,22)3 NUMBER (8 ,74,7 4,505 (18, NMX /6,28,
0s2)5

SYMBUL (3.75574235018,ALP14,054)3 NUMBER(3e7557425%2¢14sWS50,2)3
SYMBULC3,75574,0s,145ALP15,0,4)3 NUMRER(3.75s7,0s,14,A55,053)3

IF EmU # 0 THEN
BEGIN

SYMEULCoT75s6,7554145,ALP165055)3 NUMBER(1,6,75,,145EMU»0,233
SYMBOLC(e75564500e14,ALP17,0,4)3 NUMBER(1,6.,55414,5Us0,3);

SYMBECL (475564255 ¢ 14, ALP1B,058)3 NUMRER(1:59564.255 018, TRNIMAX,0,2)3
SYMBUOL(3,75,6¢735,014,ALP19,0,16)3 NUMBER(4,11,6075,418,F3s0,233
SYMBEOL (3,756,535 ¢ 14,ALP20,05,9)3 NUMBEK(#4,59,6,505,14,FURATIO,0,2)}
SYMBUL(3.75,6423,414,ALP21,0,5)3 NUMBER(4411,6,25,,14,ANS,0,3)3

IF FU # 0 THEN 3EGIN

SYMBULCeT7526,000 s 145 AL P2250515)3 NUMBER(1.411,6,005 ,145F0N»0,1)1
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AYI7»NA ) ¢ O 3 AY[7sNA=1] ¢ 1,20 )
AY(BsNA 1 ¢« 0 3 AY[B,NA=1] ¢ 1,20}
SCALE CAYIT7,#1sNAs65YMIN »DY 1)}
SCALE (AY[Bs*)sNA2»6oYMINILDY1»1))

NA ¢ NA = 2

IF EMU = 0 THEN BEGIN

IF KURIZ THEN

SBGRID (ALP30,17,ALP27,16,ALP40,25,AP33,5,TRUE)
ELSE

SBGRID (ALP30s12,ALP27»16,ALPU1,23,AP33,5,TRUE) ’
END

ELSE

IF RLRIZ THEN

SARGRID (ALP3C»17,ALP27T»165ALP82,27sALP33,5,TRUE)
BLSE

SRGRID (ALP30Cs17,ALP27»16,ALP43,25,ALP33,5,TRUE) )
LYNE (AY[O,%),AY[7,u)sNA,1)}

DASHLINE (AY[Os»#)sAY([Bsr*)sNAs1)}

FOR U ¢ 1,4 0O
BEGIN

KKk &€ ENTTER (NA X J /7 5 )}

SYMEGL (AY(OsKKC)sAY[7sKKK]s021sALP1, 90,10)}

Kk ¢ KKK + ENTIER (NA x 1 / 15 )

SYMBUL C(AY[Q»KKK)rAY[BsKKK]12»¢e212ALP1,=90,=10)3

ENDJ

NA ¢ NA+2 J
ENDJ
IF FLOT4 THEN
BEGIN
PLOT(12,0,=323 '
YMIN ¢ =180 3 )JY ¢ 60 3
SCALES (AY(10, %), NA,YMIN,DY»1))

IF EmMU = 0 THEN BEGIN

IF HORIZ THEN
SAGRIDCALPI&S18oALP27T»16,ALP40,25,ALP34,18,FALSE)
ELSE
SBGRIDCALP3&,18,ALP27»16,ALP41,23,ALP34,18,FALSE)
END
ELSE

IF HORIZ THEN

SBGRIDCALP 34,18, ALP27,16,ALP42,275ALP34,18,FALSE)
ELSE

SRGRIDCALPIG, 18sALP27,16,ALP43,25,ALP34,18,FALSE) ’
LYNE CAY[O,w),AY[10,%3),NA,1)}

ENDJ

IF FAIL THEN

PLOTC(12,0,=5)3

IF FAIL THEN FOR I ¢ 1 STEP § UNTIL (1+4x(NOINC=INCSOFAR)) DO
PLDT(0»0,«3) ELSE PLOT(12,0,=3))
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961

AR RN AT AN R AR RIS AN NNk rabnntrany GASE 5291 ahhr ek AR bRk R kA kA e bR

VERTICAL ROTOR SYSTEM
FLUID FILM BEARING

H 2040500 RaD, THAX & 31,416 RaD OMEGA = 4000,00 RPM COMEG
. . A = 8000,00 RPH

EMU = 0,010 DIM, FO = 0,000 LB, CL = 5,000-03 IN, R= 1,00 IN.
L = 1,00 IN, N s 50,00 LB, MU = 1.00.-05 REYNS FU = 0,00008+400 AND gN = 0,000
RELAXATINN FACTNR = 1,000 GOEULER = TRUE RKOLIM = a
Wl = 0,00
Ny = 60
MAXs ECCENTRICITY =0s0872 AT 50008 CYCLES HMIN = 4,549 MILS AT 192.7 DEGREES CC FROM X AXIS
EQUIL. POSe = 430063 FMAX = 2.,4839
S = 1.0667 TRSMAX = 0,0497
$S = 042667 FOCX = 0.0000
WS = 1.,5068 FOCY = 0,0000
PBRG = 0+0000

FHX = 0,0000 ANp ENX = 0,00

FHY = 0,0000 AND ENY = 0,00

EQUILe POS.(UNBALANCE) = 0,0087
SU = 46.9806

FU = 1.1352
FURATIO = 0.0227
TROMAX = 241880

RETAINER SPECS ARE!
KRX = 0,00008400 LB/]N ORX = 0400000400 LB=SEC/IN
KRY = 0,00000400 LB/]N ORY = 0,00008400 LB="SEC/IN

boormmy " (T



9F¥G - H 1 —— owe1 'AerSuet-vsvN

L6I

TIME

0,0000
0,0500
0,1000
0,1500
0,2000
0,2500
0,3000

043500

0,4000
0,4500
0,5000
0,5500
0,6000
0,6500
0,7000
0,7500
0,8000
0,8500
0+9000
0,9500
1,0000
1,0500
1,1000
1,1500
1,2000
1,2500
1,3000
1-3500
1,4000
144500
1,5000
145500
1,6000
106500
1,7000
1,7500
1,8000

X= TR,

2,00008+00
1,20280=05%
4,6309005
1,003518=04
1,80788a04
2:76388=04
3,85038=04
6033999'0“
Je7059P =4
9,13988=04
1,0618p=03
1,21318=03
1,36658=03
1,52088=03
1,67480=y3
1182740=03
1,97790=03
2¢12498=(3
2,26760=03
2,80500403
2,530640=03
2.06080a03
2.,77¢48=03
2.8856B403
2.,98458=03
3,07350«03
3.15190«03
3,2191602
3.27466=03
3.31768=93
3¢34798=03
3.364R86=03
3-3679P‘03
3,35690=03
3,29108=03

X=VEL,

0.0000®400
8,71908=04
8,90920=04
1,26156=03
1.,60938=03
1+91198=03
2.1730F=03
2.39590‘03
2,58348~=03
2¢7380P%03
2,86196=03
2,9570u=03
3,02518+03
3,0676#=03
3,08596=03
3,08138=03
3,05470~03
3,00738+03
2498000=03
?.8536P0=03
2.748998=03
?2,62688+-0)
2,48808<03
2,33318=03
2,16310=03
1,97848=03
1.77998=03
1+56838=03
1,34428=-03
1.10850=03
8.,6170F=04
€.08688=04
3.38158=04
-2120365-0“
=5,10798«04
-8,07620=04

Y-DIRC

0,0000F+00
2,05298=07
1,61768=06
5,37528=06
1,40799805
27264P=0%
4,59060=05
7.08908=05
1,03018=04
1.‘293?'04
1,91418=04
3,15780=04
3,92578-04
4,79528=04
5,7688p=04
608‘825'04
8,03a480=024
9+3278@=04
1,07288=03
1.,22358=03
1,38468=013
1,5560P«03
1,737498=03
1,92860=013
2,12918=03
2,33878«013
2:55680-03
2,7830#-03
3,01678=03
3,25758=03
3,50478=03
3,75788=03
4,016pp"03
4,27879-03
4,5452p <03
4,81478=03

Y'VEL.

0,00008400
1,22%68=05
4,80320.05
1,0581804
1,74080=014
2¢63700=04
3,728490«04
4+996780=04
6.42820-04
7¢99338=04
9,68738=04
1.1490p«03
1,33848=03
1,53560=0)
1,73008=03
1.,94720«013
2.15888=03
2¢37240=03
?2+58680=03
2,80078=03
3,01300=03
3,22246=03
3,42800«03
3,602868=03
31,82320<0)3
4.01100=03
4,19090a03
84,36210=03
4,52380«03
4,67528=03
4,81569=03
4,9443p=03
5,06078=03
$,25400+01
5,3299803
5,39140+0)

FORCE

0,00
0,12
0,23
0,33
0,43
0.51
0,58
0,64
0,70
0,75
0,79
0,83
0,86
0,89
0,92
0,94
0.9¢
0,97
0.99
1,00
1,01
1,02
1,03
1,04
1,08
1,05
1,03
1.06
1,06
1,07
1,07
1,07
1,08
1.08
1,08
1,09
1,09

TRS

0.0000
00,0025
00,0047
0,0067
00,0085
0.010?
60,0116
0.0129
0.0140
0.0150
0,0158
0,0166
0,0172
0,0178
0,0183
0.0188
0.0191
0,0198
0e0198
0,0200
0,0202
00,0204
00,0206
0,0207
0,0209
0,0210
00,0211
00,0212
0,0213
0,0213
0.,0214
0.0215
0,0215
000216
00,0217
0,0217
0,02in

RaADIUS

0.0000
0,0009
0,0015
0,0024
0,0031
0,0032
0.003
0,0034
0.0034a
0,003%
0,0035
0,0035%
0,003s
0,0036
00,0036
0,003¢
0,0036
0+0036
00,0036
0,0037
00,0037
0,0038
0,0038
0,0039
0,0039
06,0040
0,00481
00,0042
0,0043
0,0044
0.0045¢
00,0046
0.0048
0,0049
0,0050
0,005

PHI

0.000
0,539
0,598
0,519
0,5P6
0,625
0,687
0.729
0,785
0.827
0,866
0,902
0,936
0,967
0,995
1.021
1,048
1,064
1,082
1,097
1,109
1.118
1,125
1,130
1,132
1,133
1.13
1,128
1.1228
1.118
1.111
1.104
1,095
1,086
1,077
1,068
1,058

PHIB

0,000
0,349
0,365
0,380
0.268
0'269
0,291

00317

0,342
0.366
0,387
0,407

0,425

0,842
0,458
0,473

0.987

0,899
0+511

0,523
0,533
0,543
0,553
0,561

0.570
0,577
0,584
0,591
0.598
0.6048
0.509
0.618
0,619
0e628
0,628
0,632
0,636






